Mister Exam

Other calculators

Derivative of a*(cos2y)^(1/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    __________
a*\/ cos(2*y) 
$$a \sqrt{\cos{\left(2 y \right)}}$$
d /    __________\
--\a*\/ cos(2*y) /
dy                
$$\frac{\partial}{\partial y} a \sqrt{\cos{\left(2 y \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The first derivative [src]
-a*sin(2*y) 
------------
  __________
\/ cos(2*y) 
$$- \frac{a \sin{\left(2 y \right)}}{\sqrt{\cos{\left(2 y \right)}}}$$
The second derivative [src]
   /                     2      \
   |    __________    sin (2*y) |
-a*|2*\/ cos(2*y)  + -----------|
   |                    3/2     |
   \                 cos   (2*y)/
$$- a \left(2 \sqrt{\cos{\left(2 y \right)}} + \frac{\sin^{2}{\left(2 y \right)}}{\cos^{\frac{3}{2}}{\left(2 y \right)}}\right)$$
The third derivative [src]
   /         2     \          
   |    3*sin (2*y)|          
-a*|2 + -----------|*sin(2*y) 
   |        2      |          
   \     cos (2*y) /          
------------------------------
           __________         
         \/ cos(2*y)          
$$- \frac{a \left(\frac{3 \sin^{2}{\left(2 y \right)}}{\cos^{2}{\left(2 y \right)}} + 2\right) \sin{\left(2 y \right)}}{\sqrt{\cos{\left(2 y \right)}}}$$