Mister Exam

Other calculators

Derivative of 8sqrt(5x+1/5x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      _____________
     /       x     
8*  /  5*x + - - 1 
  \/         5     
8(x5+5x)18 \sqrt{\left(\frac{x}{5} + 5 x\right) - 1}
8*sqrt(5*x + x/5 - 1)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=(x5+5x)1u = \left(\frac{x}{5} + 5 x\right) - 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx((x5+5x)1)\frac{d}{d x} \left(\left(\frac{x}{5} + 5 x\right) - 1\right):

      1. Differentiate (x5+5x)1\left(\frac{x}{5} + 5 x\right) - 1 term by term:

        1. Differentiate x5+5x\frac{x}{5} + 5 x term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 15\frac{1}{5}

          The result is: 265\frac{26}{5}

        2. The derivative of the constant 1-1 is zero.

        The result is: 265\frac{26}{5}

      The result of the chain rule is:

      135(x5+5x)1\frac{13}{5 \sqrt{\left(\frac{x}{5} + 5 x\right) - 1}}

    So, the result is: 1045(x5+5x)1\frac{104}{5 \sqrt{\left(\frac{x}{5} + 5 x\right) - 1}}

  2. Now simplify:

    1045526x5\frac{104 \sqrt{5}}{5 \sqrt{26 x - 5}}


The answer is:

1045526x5\frac{104 \sqrt{5}}{5 \sqrt{26 x - 5}}

The graph
02468-8-6-4-2-10100100
The first derivative [src]
        104        
-------------------
      _____________
     /       x     
5*  /  5*x + - - 1 
  \/         5     
1045(x5+5x)1\frac{104}{5 \sqrt{\left(\frac{x}{5} + 5 x\right) - 1}}
The second derivative [src]
      -1352      
-----------------
              3/2
   /     26*x\   
25*|-1 + ----|   
   \      5  /   
135225(26x51)32- \frac{1352}{25 \left(\frac{26 x}{5} - 1\right)^{\frac{3}{2}}}
The third derivative [src]
      52728       
------------------
               5/2
    /     26*x\   
125*|-1 + ----|   
    \      5  /   
52728125(26x51)52\frac{52728}{125 \left(\frac{26 x}{5} - 1\right)^{\frac{5}{2}}}