Mister Exam

Other calculators

Derivative of (7x+6)*sin(5x+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(7*x + 6)*sin(5*x + 4)
(7x+6)sin(5x+4)\left(7 x + 6\right) \sin{\left(5 x + 4 \right)}
(7*x + 6)*sin(5*x + 4)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=7x+6f{\left(x \right)} = 7 x + 6; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 7x+67 x + 6 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 77

      2. The derivative of the constant 66 is zero.

      The result is: 77

    g(x)=sin(5x+4)g{\left(x \right)} = \sin{\left(5 x + 4 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=5x+4u = 5 x + 4.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(5x+4)\frac{d}{d x} \left(5 x + 4\right):

      1. Differentiate 5x+45 x + 4 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        2. The derivative of the constant 44 is zero.

        The result is: 55

      The result of the chain rule is:

      5cos(5x+4)5 \cos{\left(5 x + 4 \right)}

    The result is: 5(7x+6)cos(5x+4)+7sin(5x+4)5 \left(7 x + 6\right) \cos{\left(5 x + 4 \right)} + 7 \sin{\left(5 x + 4 \right)}

  2. Now simplify:

    (35x+30)cos(5x+4)+7sin(5x+4)\left(35 x + 30\right) \cos{\left(5 x + 4 \right)} + 7 \sin{\left(5 x + 4 \right)}


The answer is:

(35x+30)cos(5x+4)+7sin(5x+4)\left(35 x + 30\right) \cos{\left(5 x + 4 \right)} + 7 \sin{\left(5 x + 4 \right)}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
7*sin(5*x + 4) + 5*(7*x + 6)*cos(5*x + 4)
5(7x+6)cos(5x+4)+7sin(5x+4)5 \left(7 x + 6\right) \cos{\left(5 x + 4 \right)} + 7 \sin{\left(5 x + 4 \right)}
The second derivative [src]
5*(14*cos(4 + 5*x) - 5*(6 + 7*x)*sin(4 + 5*x))
5(5(7x+6)sin(5x+4)+14cos(5x+4))5 \left(- 5 \left(7 x + 6\right) \sin{\left(5 x + 4 \right)} + 14 \cos{\left(5 x + 4 \right)}\right)
The third derivative [src]
-25*(21*sin(4 + 5*x) + 5*(6 + 7*x)*cos(4 + 5*x))
25(5(7x+6)cos(5x+4)+21sin(5x+4))- 25 \left(5 \left(7 x + 6\right) \cos{\left(5 x + 4 \right)} + 21 \sin{\left(5 x + 4 \right)}\right)