Mister Exam

Other calculators

Derivative of 7sin^2((pi/16)*t)-3t

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2/pi  \      
7*sin |--*t| - 3*t
      \16  /      
$$- 3 t + 7 \sin^{2}{\left(t \frac{\pi}{16} \right)}$$
7*sin((pi/16)*t)^2 - 3*t
Detail solution
  1. Differentiate term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      So, the result is:

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             /pi  \    /pi  \
     7*pi*cos|--*t|*sin|--*t|
             \16  /    \16  /
-3 + ------------------------
                8            
$$\frac{7 \pi \sin{\left(t \frac{\pi}{16} \right)} \cos{\left(t \frac{\pi}{16} \right)}}{8} - 3$$
The second derivative [src]
    2 /   2/pi*t\      2/pi*t\\
7*pi *|cos |----| - sin |----||
      \    \ 16 /       \ 16 //
-------------------------------
              128              
$$\frac{7 \pi^{2} \left(- \sin^{2}{\left(\frac{\pi t}{16} \right)} + \cos^{2}{\left(\frac{\pi t}{16} \right)}\right)}{128}$$
The third derivative [src]
     3    /pi*t\    /pi*t\
-7*pi *cos|----|*sin|----|
          \ 16 /    \ 16 /
--------------------------
           512            
$$- \frac{7 \pi^{3} \sin{\left(\frac{\pi t}{16} \right)} \cos{\left(\frac{\pi t}{16} \right)}}{512}$$