cos(x) / 3 \ \5*x - 2*x/
(5*x^3 - 2*x)^cos(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
cos(x) / / 2\ \
/ 3 \ | / 3 \ \-2 + 15*x /*cos(x)|
\5*x - 2*x/ *|- log\5*x - 2*x/*sin(x) + -------------------|
| 3 |
\ 5*x - 2*x /
/ 2 2 \
cos(x) |/ / 2\ \ / 2\ / 2\ |
/ / 2\\ || / / 2\\ \-2 + 15*x /*cos(x)| / / 2\\ 30*cos(x) \-2 + 15*x / *cos(x) 2*\-2 + 15*x /*sin(x)|
\x*\-2 + 5*x // *||- log\x*\-2 + 5*x //*sin(x) + -------------------| - cos(x)*log\x*\-2 + 5*x // + --------- - -------------------- - ---------------------|
|| / 2\ | 2 2 / 2\ |
|\ x*\-2 + 5*x / / -2 + 5*x 2 / 2\ x*\-2 + 5*x / |
\ x *\-2 + 5*x / /
/ 3 / 2 \ 3 2 \
cos(x) |/ / 2\ \ / / 2\ \ | / 2\ / 2\ | / 2\ / 2\ / 2\ / 2\ |
/ / 2\\ || / / 2\\ \-2 + 15*x /*cos(x)| / / 2\\ 90*sin(x) | / / 2\\ \-2 + 15*x /*cos(x)| | / / 2\\ 30*cos(x) \-2 + 15*x / *cos(x) 2*\-2 + 15*x /*sin(x)| 30*cos(x) 90*\-2 + 15*x /*cos(x) 3*\-2 + 15*x /*cos(x) 2*\-2 + 15*x / *cos(x) 3*\-2 + 15*x / *sin(x)|
\x*\-2 + 5*x // *||- log\x*\-2 + 5*x //*sin(x) + -------------------| + log\x*\-2 + 5*x //*sin(x) - --------- - 3*|- log\x*\-2 + 5*x //*sin(x) + -------------------|*|cos(x)*log\x*\-2 + 5*x // - --------- + -------------------- + ---------------------| + ------------- - ---------------------- - --------------------- + ---------------------- + ----------------------|
|| / 2\ | 2 | / 2\ | | 2 2 / 2\ | / 2\ 2 / 2\ 3 2 |
|\ x*\-2 + 5*x / / -2 + 5*x \ x*\-2 + 5*x / / | -2 + 5*x 2 / 2\ x*\-2 + 5*x / | x*\-2 + 5*x / / 2\ x*\-2 + 5*x / 3 / 2\ 2 / 2\ |
\ \ x *\-2 + 5*x / / x*\-2 + 5*x / x *\-2 + 5*x / x *\-2 + 5*x / /