Mister Exam

Other calculators

Derivative of (((5x^3)-2x)^(cosx))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            cos(x)
/   3      \      
\5*x  - 2*x/      
$$\left(5 x^{3} - 2 x\right)^{\cos{\left(x \right)}}$$
(5*x^3 - 2*x)^cos(x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
            cos(x) /                           /         2\       \
/   3      \       |     /   3      \          \-2 + 15*x /*cos(x)|
\5*x  - 2*x/      *|- log\5*x  - 2*x/*sin(x) + -------------------|
                   |                                   3          |
                   \                                5*x  - 2*x    /
$$\left(5 x^{3} - 2 x\right)^{\cos{\left(x \right)}} \left(\frac{\left(15 x^{2} - 2\right) \cos{\left(x \right)}}{5 x^{3} - 2 x} - \log{\left(5 x^{3} - 2 x \right)} \sin{\left(x \right)}\right)$$
The second derivative [src]
                      /                                                   2                                                       2                               \
               cos(x) |/                              /         2\       \                                            /         2\             /         2\       |
/  /        2\\       ||     /  /        2\\          \-2 + 15*x /*cos(x)|              /  /        2\\   30*cos(x)   \-2 + 15*x / *cos(x)   2*\-2 + 15*x /*sin(x)|
\x*\-2 + 5*x //      *||- log\x*\-2 + 5*x //*sin(x) + -------------------|  - cos(x)*log\x*\-2 + 5*x // + --------- - -------------------- - ---------------------|
                      ||                                   /        2\   |                                        2                   2            /        2\    |
                      |\                                 x*\-2 + 5*x /   /                                -2 + 5*x       2 /        2\           x*\-2 + 5*x /    |
                      \                                                                                                 x *\-2 + 5*x /                            /
$$\left(x \left(5 x^{2} - 2\right)\right)^{\cos{\left(x \right)}} \left(\left(- \log{\left(x \left(5 x^{2} - 2\right) \right)} \sin{\left(x \right)} + \frac{\left(15 x^{2} - 2\right) \cos{\left(x \right)}}{x \left(5 x^{2} - 2\right)}\right)^{2} - \log{\left(x \left(5 x^{2} - 2\right) \right)} \cos{\left(x \right)} + \frac{30 \cos{\left(x \right)}}{5 x^{2} - 2} - \frac{2 \left(15 x^{2} - 2\right) \sin{\left(x \right)}}{x \left(5 x^{2} - 2\right)} - \frac{\left(15 x^{2} - 2\right)^{2} \cos{\left(x \right)}}{x^{2} \left(5 x^{2} - 2\right)^{2}}\right)$$
The third derivative [src]
                      /                                                   3                                                                                                 /                                                    2                               \                                                                                  3                        2       \
               cos(x) |/                              /         2\       \                                              /                              /         2\       \ |                                        /         2\             /         2\       |                      /         2\            /         2\            /         2\             /         2\        |
/  /        2\\       ||     /  /        2\\          \-2 + 15*x /*cos(x)|       /  /        2\\          90*sin(x)     |     /  /        2\\          \-2 + 15*x /*cos(x)| |          /  /        2\\   30*cos(x)   \-2 + 15*x / *cos(x)   2*\-2 + 15*x /*sin(x)|     30*cos(x)     90*\-2 + 15*x /*cos(x)   3*\-2 + 15*x /*cos(x)   2*\-2 + 15*x / *cos(x)   3*\-2 + 15*x / *sin(x)|
\x*\-2 + 5*x //      *||- log\x*\-2 + 5*x //*sin(x) + -------------------|  + log\x*\-2 + 5*x //*sin(x) - --------- - 3*|- log\x*\-2 + 5*x //*sin(x) + -------------------|*|cos(x)*log\x*\-2 + 5*x // - --------- + -------------------- + ---------------------| + ------------- - ---------------------- - --------------------- + ---------------------- + ----------------------|
                      ||                                   /        2\   |                                        2     |                                   /        2\   | |                                    2                   2            /        2\    |     /        2\                    2             /        2\                        3                        2    |
                      |\                                 x*\-2 + 5*x /   /                                -2 + 5*x      \                                 x*\-2 + 5*x /   / |                            -2 + 5*x       2 /        2\           x*\-2 + 5*x /    |   x*\-2 + 5*x /         /        2\            x*\-2 + 5*x /           3 /        2\            2 /        2\     |
                      \                                                                                                                                                     \                                          x *\-2 + 5*x /                            /                       x*\-2 + 5*x /                                   x *\-2 + 5*x /           x *\-2 + 5*x /     /
$$\left(x \left(5 x^{2} - 2\right)\right)^{\cos{\left(x \right)}} \left(\left(- \log{\left(x \left(5 x^{2} - 2\right) \right)} \sin{\left(x \right)} + \frac{\left(15 x^{2} - 2\right) \cos{\left(x \right)}}{x \left(5 x^{2} - 2\right)}\right)^{3} - 3 \left(- \log{\left(x \left(5 x^{2} - 2\right) \right)} \sin{\left(x \right)} + \frac{\left(15 x^{2} - 2\right) \cos{\left(x \right)}}{x \left(5 x^{2} - 2\right)}\right) \left(\log{\left(x \left(5 x^{2} - 2\right) \right)} \cos{\left(x \right)} - \frac{30 \cos{\left(x \right)}}{5 x^{2} - 2} + \frac{2 \left(15 x^{2} - 2\right) \sin{\left(x \right)}}{x \left(5 x^{2} - 2\right)} + \frac{\left(15 x^{2} - 2\right)^{2} \cos{\left(x \right)}}{x^{2} \left(5 x^{2} - 2\right)^{2}}\right) + \log{\left(x \left(5 x^{2} - 2\right) \right)} \sin{\left(x \right)} - \frac{90 \sin{\left(x \right)}}{5 x^{2} - 2} - \frac{3 \left(15 x^{2} - 2\right) \cos{\left(x \right)}}{x \left(5 x^{2} - 2\right)} + \frac{30 \cos{\left(x \right)}}{x \left(5 x^{2} - 2\right)} - \frac{90 \left(15 x^{2} - 2\right) \cos{\left(x \right)}}{x \left(5 x^{2} - 2\right)^{2}} + \frac{3 \left(15 x^{2} - 2\right)^{2} \sin{\left(x \right)}}{x^{2} \left(5 x^{2} - 2\right)^{2}} + \frac{2 \left(15 x^{2} - 2\right)^{3} \cos{\left(x \right)}}{x^{3} \left(5 x^{2} - 2\right)^{3}}\right)$$