Mister Exam

Other calculators


(5x-9x^3)(8+x^2)

Derivative of (5x-9x^3)(8+x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/         3\ /     2\
\5*x - 9*x /*\8 + x /
(x2+8)(9x3+5x)\left(x^{2} + 8\right) \left(- 9 x^{3} + 5 x\right)
d //         3\ /     2\\
--\\5*x - 9*x /*\8 + x //
dx                       
ddx(x2+8)(9x3+5x)\frac{d}{d x} \left(x^{2} + 8\right) \left(- 9 x^{3} + 5 x\right)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=9x3+5xf{\left(x \right)} = - 9 x^{3} + 5 x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 9x3+5x- 9 x^{3} + 5 x term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

          So, the result is: 27x227 x^{2}

        So, the result is: 27x2- 27 x^{2}

      The result is: 527x25 - 27 x^{2}

    g(x)=x2+8g{\left(x \right)} = x^{2} + 8; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x2+8x^{2} + 8 term by term:

      1. The derivative of the constant 88 is zero.

      2. Apply the power rule: x2x^{2} goes to 2x2 x

      The result is: 2x2 x

    The result is: 2x(9x3+5x)+(527x2)(x2+8)2 x \left(- 9 x^{3} + 5 x\right) + \left(5 - 27 x^{2}\right) \left(x^{2} + 8\right)

  2. Now simplify:

    45x4201x2+40- 45 x^{4} - 201 x^{2} + 40


The answer is:

45x4201x2+40- 45 x^{4} - 201 x^{2} + 40

The graph
02468-8-6-4-2-1010-20000002000000
The first derivative [src]
/        2\ /     2\       /         3\
\5 - 27*x /*\8 + x / + 2*x*\5*x - 9*x /
2x(9x3+5x)+(27x2+5)(x2+8)2 x \left(- 9 x^{3} + 5 x\right) + \left(- 27 x^{2} + 5\right) \left(x^{2} + 8\right)
The second derivative [src]
    /           2\
2*x*\-201 - 90*x /
2x(90x2201)2 x \left(- 90 x^{2} - 201\right)
The third derivative [src]
   /         2\
-6*\67 + 90*x /
6(90x2+67)- 6 \cdot \left(90 x^{2} + 67\right)
The graph
Derivative of (5x-9x^3)(8+x^2)