Mister Exam

Derivative of 5ln(3x+5ln(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
5*log(3*x + 5*log(x))
$$5 \log{\left(3 x + 5 \log{\left(x \right)} \right)}$$
5*log(3*x + 5*log(x))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of is .

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    /    5\   
  5*|3 + -|   
    \    x/   
--------------
3*x + 5*log(x)
$$\frac{5 \left(3 + \frac{5}{x}\right)}{3 x + 5 \log{\left(x \right)}}$$
The second derivative [src]
   /               2   \
   |        /    5\    |
   |        |3 + -|    |
   |5       \    x/    |
-5*|-- + --------------|
   | 2   3*x + 5*log(x)|
   \x                  /
------------------------
     3*x + 5*log(x)     
$$- \frac{5 \left(\frac{\left(3 + \frac{5}{x}\right)^{2}}{3 x + 5 \log{\left(x \right)}} + \frac{5}{x^{2}}\right)}{3 x + 5 \log{\left(x \right)}}$$
The third derivative [src]
  /                  3                         \
  |           /    5\               /    5\    |
  |         2*|3 + -|            15*|3 + -|    |
  |10         \    x/               \    x/    |
5*|-- + ----------------- + -------------------|
  | 3                   2    2                 |
  \x    (3*x + 5*log(x))    x *(3*x + 5*log(x))/
------------------------------------------------
                 3*x + 5*log(x)                 
$$\frac{5 \left(\frac{2 \left(3 + \frac{5}{x}\right)^{3}}{\left(3 x + 5 \log{\left(x \right)}\right)^{2}} + \frac{15 \left(3 + \frac{5}{x}\right)}{x^{2} \left(3 x + 5 \log{\left(x \right)}\right)} + \frac{10}{x^{3}}\right)}{3 x + 5 \log{\left(x \right)}}$$
The graph
Derivative of 5ln(3x+5ln(x))