Mister Exam

Other calculators

Derivative of (4x-9)cos(x/5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             /x\
(4*x - 9)*cos|-|
             \5/
$$\left(4 x - 9\right) \cos{\left(\frac{x}{5} \right)}$$
(4*x - 9)*cos(x/5)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                        /x\
           (4*x - 9)*sin|-|
     /x\                \5/
4*cos|-| - ----------------
     \5/          5        
$$- \frac{\left(4 x - 9\right) \sin{\left(\frac{x}{5} \right)}}{5} + 4 \cos{\left(\frac{x}{5} \right)}$$
The second derivative [src]
 /      /x\                 /x\\ 
-|40*sin|-| + (-9 + 4*x)*cos|-|| 
 \      \5/                 \5// 
---------------------------------
                25               
$$- \frac{\left(4 x - 9\right) \cos{\left(\frac{x}{5} \right)} + 40 \sin{\left(\frac{x}{5} \right)}}{25}$$
The third derivative [src]
        /x\                 /x\
- 60*cos|-| + (-9 + 4*x)*sin|-|
        \5/                 \5/
-------------------------------
              125              
$$\frac{\left(4 x - 9\right) \sin{\left(\frac{x}{5} \right)} - 60 \cos{\left(\frac{x}{5} \right)}}{125}$$