Mister Exam

Other calculators


4x(cosx^3)

Derivative of 4x(cosx^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       3   
4*x*cos (x)
$$4 x \cos^{3}{\left(x \right)}$$
d /       3   \
--\4*x*cos (x)/
dx             
$$\frac{d}{d x} 4 x \cos^{3}{\left(x \right)}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3              2          
4*cos (x) - 12*x*cos (x)*sin(x)
$$- 12 x \sin{\left(x \right)} \cos^{2}{\left(x \right)} + 4 \cos^{3}{\left(x \right)}$$
The second derivative [src]
   /  /     2           2   \                  \       
12*\x*\- cos (x) + 2*sin (x)/ - 2*cos(x)*sin(x)/*cos(x)
$$12 \left(x \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) \cos{\left(x \right)}$$
The third derivative [src]
   /  /     2           2   \            /       2           2   \       \
12*\3*\- cos (x) + 2*sin (x)/*cos(x) - x*\- 7*cos (x) + 2*sin (x)/*sin(x)/
$$12 \left(- x \left(2 \sin^{2}{\left(x \right)} - 7 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} + 3 \cdot \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}\right)$$
The graph
Derivative of 4x(cosx^3)