Mister Exam

Other calculators

Derivative of (4ln^2(8x+7))/exp^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2         
4*log (8*x + 7)
---------------
        x      
       E       
$$\frac{4 \log{\left(8 x + 7 \right)}^{2}}{e^{x}}$$
(4*log(8*x + 7)^2)/E^x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      So, the result is:

    To find :

    1. The derivative of is itself.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                            -x             
       2           -x   64*e  *log(8*x + 7)
- 4*log (8*x + 7)*e   + -------------------
                              8*x + 7      
$$- 4 e^{- x} \log{\left(8 x + 7 \right)}^{2} + \frac{64 e^{- x} \log{\left(8 x + 7 \right)}}{8 x + 7}$$
The second derivative [src]
  /   2            128*(-1 + log(7 + 8*x))   32*log(7 + 8*x)\  -x
4*|log (7 + 8*x) - ----------------------- - ---------------|*e  
  |                                2             7 + 8*x    |    
  \                       (7 + 8*x)                         /    
$$4 \left(\log{\left(8 x + 7 \right)}^{2} - \frac{32 \log{\left(8 x + 7 \right)}}{8 x + 7} - \frac{128 \left(\log{\left(8 x + 7 \right)} - 1\right)}{\left(8 x + 7\right)^{2}}\right) e^{- x}$$
The third derivative [src]
  /     2            48*log(7 + 8*x)   384*(-1 + log(7 + 8*x))   1024*(-3 + 2*log(7 + 8*x))\  -x
4*|- log (7 + 8*x) + --------------- + ----------------------- + --------------------------|*e  
  |                      7 + 8*x                       2                          3        |    
  \                                           (7 + 8*x)                  (7 + 8*x)         /    
$$4 \left(- \log{\left(8 x + 7 \right)}^{2} + \frac{48 \log{\left(8 x + 7 \right)}}{8 x + 7} + \frac{384 \left(\log{\left(8 x + 7 \right)} - 1\right)}{\left(8 x + 7\right)^{2}} + \frac{1024 \left(2 \log{\left(8 x + 7 \right)} - 3\right)}{\left(8 x + 7\right)^{3}}\right) e^{- x}$$