Mister Exam

Other calculators


4sin((pi/2)*x)

Derivative of 4sin((pi/2)*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /pi*x\
4*sin|----|
     \ 2  /
$$4 \sin{\left(\frac{\pi x}{2} \right)}$$
d /     /pi*x\\
--|4*sin|----||
dx\     \ 2  //
$$\frac{d}{d x} 4 \sin{\left(\frac{\pi x}{2} \right)}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
        /pi*x\
2*pi*cos|----|
        \ 2  /
$$2 \pi \cos{\left(\frac{\pi x}{2} \right)}$$
The second derivative [src]
   2    /pi*x\
-pi *sin|----|
        \ 2  /
$$- \pi^{2} \sin{\left(\frac{\pi x}{2} \right)}$$
The third derivative [src]
   3    /pi*x\ 
-pi *cos|----| 
        \ 2  / 
---------------
       2       
$$- \frac{\pi^{3} \cos{\left(\frac{\pi x}{2} \right)}}{2}$$
The graph
Derivative of 4sin((pi/2)*x)