Mister Exam

Other calculators


4cos^5x-sqrt(lnx)

Derivative of 4cos^5x-sqrt(lnx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     5        ________
4*cos (x) - \/ log(x) 
$$- \sqrt{\log{\left(x \right)}} + 4 \cos^{5}{\left(x \right)}$$
d /     5        ________\
--\4*cos (x) - \/ log(x) /
dx                        
$$\frac{d}{d x} \left(- \sqrt{\log{\left(x \right)}} + 4 \cos^{5}{\left(x \right)}\right)$$
Detail solution
  1. Differentiate term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      So, the result is:

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      So, the result is:

    The result is:


The answer is:

The graph
The first derivative [src]
        4                   1       
- 20*cos (x)*sin(x) - --------------
                            ________
                      2*x*\/ log(x) 
$$- 20 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - \frac{1}{2 x \sqrt{\log{\left(x \right)}}}$$
The second derivative [src]
        5             1                3       2            1       
- 20*cos (x) + --------------- + 80*cos (x)*sin (x) + --------------
                  2   ________                           2    3/2   
               2*x *\/ log(x)                         4*x *log   (x)
$$80 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} - 20 \cos^{5}{\left(x \right)} + \frac{1}{2 x^{2} \sqrt{\log{\left(x \right)}}} + \frac{1}{4 x^{2} \log{\left(x \right)}^{\frac{3}{2}}}$$
The third derivative [src]
        1                2       3             4                   3                3       
- ------------- - 240*cos (x)*sin (x) + 260*cos (x)*sin(x) - -------------- - --------------
   3   ________                                                 3    3/2         3    5/2   
  x *\/ log(x)                                               4*x *log   (x)   8*x *log   (x)
$$- 240 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} + 260 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - \frac{1}{x^{3} \sqrt{\log{\left(x \right)}}} - \frac{3}{4 x^{3} \log{\left(x \right)}^{\frac{3}{2}}} - \frac{3}{8 x^{3} \log{\left(x \right)}^{\frac{5}{2}}}$$
The graph
Derivative of 4cos^5x-sqrt(lnx)