Mister Exam

Other calculators


(3x^2+2)(ln^2x)

Derivative of (3x^2+2)(ln^2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/   2    \    2   
\3*x  + 2/*log (x)
$$\left(3 x^{2} + 2\right) \log{\left(x \right)}^{2}$$
d //   2    \    2   \
--\\3*x  + 2/*log (x)/
dx                    
$$\frac{d}{d x} \left(3 x^{2} + 2\right) \log{\left(x \right)}^{2}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                /   2    \       
       2      2*\3*x  + 2/*log(x)
6*x*log (x) + -------------------
                       x         
$$6 x \log{\left(x \right)}^{2} + \frac{2 \cdot \left(3 x^{2} + 2\right) \log{\left(x \right)}}{x}$$
The second derivative [src]
  /                                      /       2\\
  |     2                  (-1 + log(x))*\2 + 3*x /|
2*|3*log (x) + 12*log(x) - ------------------------|
  |                                    2           |
  \                                   x            /
$$2 \cdot \left(3 \log{\left(x \right)}^{2} + 12 \log{\left(x \right)} - \frac{\left(3 x^{2} + 2\right) \left(\log{\left(x \right)} - 1\right)}{x^{2}}\right)$$
The third derivative [src]
  /                     /       2\\
  |     (-3 + 2*log(x))*\2 + 3*x /|
2*|18 + --------------------------|
  |                  2            |
  \                 x             /
-----------------------------------
                 x                 
$$\frac{2 \cdot \left(18 + \frac{\left(3 x^{2} + 2\right) \left(2 \log{\left(x \right)} - 3\right)}{x^{2}}\right)}{x}$$
The graph
Derivative of (3x^2+2)(ln^2x)