/ 2 \ 2 \3*x + 2/*log (x)
d // 2 \ 2 \ --\\3*x + 2/*log (x)/ dx
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 2 \ 2 2*\3*x + 2/*log(x) 6*x*log (x) + ------------------- x
/ / 2\\ | 2 (-1 + log(x))*\2 + 3*x /| 2*|3*log (x) + 12*log(x) - ------------------------| | 2 | \ x /
/ / 2\\ | (-3 + 2*log(x))*\2 + 3*x /| 2*|18 + --------------------------| | 2 | \ x / ----------------------------------- x