Mister Exam

Derivative of 3x^2sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       
3*x *sin(x)
3x2sin(x)3 x^{2} \sin{\left(x \right)}
d /   2       \
--\3*x *sin(x)/
dx             
ddx3x2sin(x)\frac{d}{d x} 3 x^{2} \sin{\left(x \right)}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result is: x2cos(x)+2xsin(x)x^{2} \cos{\left(x \right)} + 2 x \sin{\left(x \right)}

    So, the result is: 3x2cos(x)+6xsin(x)3 x^{2} \cos{\left(x \right)} + 6 x \sin{\left(x \right)}

  2. Now simplify:

    3x(xcos(x)+2sin(x))3 x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right)


The answer is:

3x(xcos(x)+2sin(x))3 x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right)

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
   2                    
3*x *cos(x) + 6*x*sin(x)
3x2cos(x)+6xsin(x)3 x^{2} \cos{\left(x \right)} + 6 x \sin{\left(x \right)}
The second derivative [src]
  /            2                    \
3*\2*sin(x) - x *sin(x) + 4*x*cos(x)/
3(x2sin(x)+4xcos(x)+2sin(x))3 \left(- x^{2} \sin{\left(x \right)} + 4 x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right)
The third derivative [src]
  /            2                    \
3*\6*cos(x) - x *cos(x) - 6*x*sin(x)/
3(x2cos(x)6xsin(x)+6cos(x))3 \left(- x^{2} \cos{\left(x \right)} - 6 x \sin{\left(x \right)} + 6 \cos{\left(x \right)}\right)
The graph
Derivative of 3x^2sinx