Mister Exam

Other calculators


3x^2sin4x+4x^3cos4x

Derivative of 3x^2sin4x+4x^3cos4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2               3         
3*x *sin(4*x) + 4*x *cos(4*x)
4x3cos(4x)+3x2sin(4x)4 x^{3} \cos{\left(4 x \right)} + 3 x^{2} \sin{\left(4 x \right)}
d /   2               3         \
--\3*x *sin(4*x) + 4*x *cos(4*x)/
dx                               
ddx(4x3cos(4x)+3x2sin(4x))\frac{d}{d x} \left(4 x^{3} \cos{\left(4 x \right)} + 3 x^{2} \sin{\left(4 x \right)}\right)
Detail solution
  1. Differentiate 4x3cos(4x)+3x2sin(4x)4 x^{3} \cos{\left(4 x \right)} + 3 x^{2} \sin{\left(4 x \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the product rule:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

        f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        g(x)=sin(4x)g{\left(x \right)} = \sin{\left(4 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4cos(4x)4 \cos{\left(4 x \right)}

        The result is: 4x2cos(4x)+2xsin(4x)4 x^{2} \cos{\left(4 x \right)} + 2 x \sin{\left(4 x \right)}

      So, the result is: 12x2cos(4x)+6xsin(4x)12 x^{2} \cos{\left(4 x \right)} + 6 x \sin{\left(4 x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the product rule:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

        f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

        g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4sin(4x)- 4 \sin{\left(4 x \right)}

        The result is: 4x3sin(4x)+3x2cos(4x)- 4 x^{3} \sin{\left(4 x \right)} + 3 x^{2} \cos{\left(4 x \right)}

      So, the result is: 16x3sin(4x)+12x2cos(4x)- 16 x^{3} \sin{\left(4 x \right)} + 12 x^{2} \cos{\left(4 x \right)}

    The result is: 16x3sin(4x)+24x2cos(4x)+6xsin(4x)- 16 x^{3} \sin{\left(4 x \right)} + 24 x^{2} \cos{\left(4 x \right)} + 6 x \sin{\left(4 x \right)}

  2. Now simplify:

    2x(8x2sin(4x)+12xcos(4x)+3sin(4x))2 x \left(- 8 x^{2} \sin{\left(4 x \right)} + 12 x \cos{\left(4 x \right)} + 3 \sin{\left(4 x \right)}\right)


The answer is:

2x(8x2sin(4x)+12xcos(4x)+3sin(4x))2 x \left(- 8 x^{2} \sin{\left(4 x \right)} + 12 x \cos{\left(4 x \right)} + 3 \sin{\left(4 x \right)}\right)

The graph
02468-8-6-4-2-1010-2500025000
The first derivative [src]
      3                               2         
- 16*x *sin(4*x) + 6*x*sin(4*x) + 24*x *cos(4*x)
16x3sin(4x)+24x2cos(4x)+6xsin(4x)- 16 x^{3} \sin{\left(4 x \right)} + 24 x^{2} \cos{\left(4 x \right)} + 6 x \sin{\left(4 x \right)}
The second derivative [src]
  /                 2                3                         \
2*\3*sin(4*x) - 72*x *sin(4*x) - 32*x *cos(4*x) + 36*x*cos(4*x)/
2(32x3cos(4x)72x2sin(4x)+36xcos(4x)+3sin(4x))2 \left(- 32 x^{3} \cos{\left(4 x \right)} - 72 x^{2} \sin{\left(4 x \right)} + 36 x \cos{\left(4 x \right)} + 3 \sin{\left(4 x \right)}\right)
The third derivative [src]
   /                 2                               3         \
32*\3*cos(4*x) - 24*x *cos(4*x) - 18*x*sin(4*x) + 8*x *sin(4*x)/
32(8x3sin(4x)24x2cos(4x)18xsin(4x)+3cos(4x))32 \cdot \left(8 x^{3} \sin{\left(4 x \right)} - 24 x^{2} \cos{\left(4 x \right)} - 18 x \sin{\left(4 x \right)} + 3 \cos{\left(4 x \right)}\right)
The graph
Derivative of 3x^2sin4x+4x^3cos4x