Mister Exam

Other calculators

Derivative of ((3x+2)/(3x-4))^(1-10x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1 - 10*x
/3*x + 2\        
|-------|        
\3*x - 4/        
$$\left(\frac{3 x + 2}{3 x - 4}\right)^{1 - 10 x}$$
((3*x + 2)/(3*x - 4))^(1 - 10*x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
                  /                                         /   3      3*(3*x + 2)\\
                  |                    (1 - 10*x)*(3*x - 4)*|------- - -----------||
         1 - 10*x |                                         |3*x - 4             2||
/3*x + 2\         |        /3*x + 2\                        \           (3*x - 4) /|
|-------|        *|- 10*log|-------| + --------------------------------------------|
\3*x - 4/         \        \3*x - 4/                     3*x + 2                   /
$$\left(\frac{3 x + 2}{3 x - 4}\right)^{1 - 10 x} \left(\frac{\left(1 - 10 x\right) \left(3 x - 4\right) \left(\frac{3}{3 x - 4} - \frac{3 \left(3 x + 2\right)}{\left(3 x - 4\right)^{2}}\right)}{3 x + 2} - 10 \log{\left(\frac{3 x + 2}{3 x - 4} \right)}\right)$$
The second derivative [src]
                   /                                                 2                                                         \
                   |/                     /    2 + 3*x \            \      /    2 + 3*x \ /      3*(-1 + 10*x)   3*(-1 + 10*x)\|
          1 - 10*x ||                   3*|1 - --------|*(-1 + 10*x)|    3*|1 - --------|*|-20 + ------------- + -------------||
/2 + 3*x \         ||      /2 + 3*x \     \    -4 + 3*x/            |      \    -4 + 3*x/ \         -4 + 3*x        2 + 3*x   /|
|--------|        *||10*log|--------| + ----------------------------|  + ------------------------------------------------------|
\-4 + 3*x/         \\      \-4 + 3*x/             2 + 3*x           /                           2 + 3*x                        /
$$\left(\frac{3 x + 2}{3 x - 4}\right)^{1 - 10 x} \left(\frac{3 \left(1 - \frac{3 x + 2}{3 x - 4}\right) \left(-20 + \frac{3 \left(10 x - 1\right)}{3 x + 2} + \frac{3 \left(10 x - 1\right)}{3 x - 4}\right)}{3 x + 2} + \left(\frac{3 \left(1 - \frac{3 x + 2}{3 x - 4}\right) \left(10 x - 1\right)}{3 x + 2} + 10 \log{\left(\frac{3 x + 2}{3 x - 4} \right)}\right)^{2}\right)$$
The third derivative [src]
                    /                                                                                                                                                                   /                     /    2 + 3*x \            \                                      \
                    |                                                 3      /    2 + 3*x \ /     5          5       -1 + 10*x    -1 + 10*x         -1 + 10*x      \                    |                   3*|1 - --------|*(-1 + 10*x)|                                      |
                    |/                     /    2 + 3*x \            \    54*|1 - --------|*|- -------- - ------- + ----------- + ---------- + --------------------|     /    2 + 3*x \ |      /2 + 3*x \     \    -4 + 3*x/            | /      3*(-1 + 10*x)   3*(-1 + 10*x)\|
           1 - 10*x ||                   3*|1 - --------|*(-1 + 10*x)|       \    -4 + 3*x/ |  -4 + 3*x   2 + 3*x             2            2   (-4 + 3*x)*(2 + 3*x)|   9*|1 - --------|*|10*log|--------| + ----------------------------|*|-20 + ------------- + -------------||
 /2 + 3*x \         ||      /2 + 3*x \     \    -4 + 3*x/            |                      \                       (-4 + 3*x)    (2 + 3*x)                        /     \    -4 + 3*x/ \      \-4 + 3*x/             2 + 3*x           / \         -4 + 3*x        2 + 3*x   /|
-|--------|        *||10*log|--------| + ----------------------------|  + ------------------------------------------------------------------------------------------ + --------------------------------------------------------------------------------------------------------|
 \-4 + 3*x/         \\      \-4 + 3*x/             2 + 3*x           /                                             2 + 3*x                                                                                             2 + 3*x                                                 /
$$- \left(\frac{3 x + 2}{3 x - 4}\right)^{1 - 10 x} \left(\frac{9 \left(1 - \frac{3 x + 2}{3 x - 4}\right) \left(\frac{3 \left(1 - \frac{3 x + 2}{3 x - 4}\right) \left(10 x - 1\right)}{3 x + 2} + 10 \log{\left(\frac{3 x + 2}{3 x - 4} \right)}\right) \left(-20 + \frac{3 \left(10 x - 1\right)}{3 x + 2} + \frac{3 \left(10 x - 1\right)}{3 x - 4}\right)}{3 x + 2} + \frac{54 \left(1 - \frac{3 x + 2}{3 x - 4}\right) \left(- \frac{5}{3 x + 2} + \frac{10 x - 1}{\left(3 x + 2\right)^{2}} - \frac{5}{3 x - 4} + \frac{10 x - 1}{\left(3 x - 4\right) \left(3 x + 2\right)} + \frac{10 x - 1}{\left(3 x - 4\right)^{2}}\right)}{3 x + 2} + \left(\frac{3 \left(1 - \frac{3 x + 2}{3 x - 4}\right) \left(10 x - 1\right)}{3 x + 2} + 10 \log{\left(\frac{3 x + 2}{3 x - 4} \right)}\right)^{3}\right)$$