3*x - 2*sin(x)
--------------
2
5*cos (x)
(3*x - 2*sin(x))/((5*cos(x)^2))
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
So, the result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 2*(3*x - 2*sin(x))*sin(x)
---------*(3 - 2*cos(x)) + -------------------------
2 3
5*cos (x) 5*cos (x)
// 2 \ \
|| 3*sin (x)| 2*(-3 + 2*cos(x))*sin(x) |
2*||1 + ---------|*(-2*sin(x) + 3*x) - ------------------------ + sin(x)|
|| 2 | cos(x) |
\\ cos (x) / /
-------------------------------------------------------------------------
2
5*cos (x)
/ / 2 \ / 2 \ \
| | 3*sin (x)| | 3*sin (x)| |
| 3*|1 + ---------|*(-3 + 2*cos(x)) 4*|2 + ---------|*(-2*sin(x) + 3*x)*sin(x)|
| 2 | 2 | | 2 | |
| 6*sin (x) \ cos (x) / \ cos (x) / |
2*|1 + --------- - --------------------------------- + ------------------------------------------|
| 2 cos(x) 2 |
\ cos (x) cos (x) /
--------------------------------------------------------------------------------------------------
5*cos(x)