Mister Exam

Other calculators

Derivative of (3x-2sinx)/(5cos^2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*x - 2*sin(x)
--------------
       2      
  5*cos (x)   
$$\frac{3 x - 2 \sin{\left(x \right)}}{5 \cos^{2}{\left(x \right)}}$$
(3*x - 2*sin(x))/((5*cos(x)^2))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1                      2*(3*x - 2*sin(x))*sin(x)
---------*(3 - 2*cos(x)) + -------------------------
     2                                  3           
5*cos (x)                          5*cos (x)        
$$\left(3 - 2 \cos{\left(x \right)}\right) \frac{1}{5 \cos^{2}{\left(x \right)}} + \frac{2 \left(3 x - 2 \sin{\left(x \right)}\right) \sin{\left(x \right)}}{5 \cos^{3}{\left(x \right)}}$$
The second derivative [src]
  //         2   \                                                      \
  ||    3*sin (x)|                     2*(-3 + 2*cos(x))*sin(x)         |
2*||1 + ---------|*(-2*sin(x) + 3*x) - ------------------------ + sin(x)|
  ||        2    |                              cos(x)                  |
  \\     cos (x) /                                                      /
-------------------------------------------------------------------------
                                     2                                   
                                5*cos (x)                                
$$\frac{2 \left(\left(3 x - 2 \sin{\left(x \right)}\right) \left(\frac{3 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) - \frac{2 \left(2 \cos{\left(x \right)} - 3\right) \sin{\left(x \right)}}{\cos{\left(x \right)}} + \sin{\left(x \right)}\right)}{5 \cos^{2}{\left(x \right)}}$$
The third derivative [src]
  /                  /         2   \                     /         2   \                         \
  |                  |    3*sin (x)|                     |    3*sin (x)|                         |
  |                3*|1 + ---------|*(-3 + 2*cos(x))   4*|2 + ---------|*(-2*sin(x) + 3*x)*sin(x)|
  |         2        |        2    |                     |        2    |                         |
  |    6*sin (x)     \     cos (x) /                     \     cos (x) /                         |
2*|1 + --------- - --------------------------------- + ------------------------------------------|
  |        2                     cos(x)                                    2                     |
  \     cos (x)                                                         cos (x)                  /
--------------------------------------------------------------------------------------------------
                                             5*cos(x)                                             
$$\frac{2 \left(\frac{4 \left(3 x - 2 \sin{\left(x \right)}\right) \left(\frac{3 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 2\right) \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \frac{3 \left(\frac{3 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \left(2 \cos{\left(x \right)} - 3\right)}{\cos{\left(x \right)}} + \frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right)}{5 \cos{\left(x \right)}}$$