Mister Exam

Derivative of 3x²*sinx+tgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2                
3*x *sin(x) + tan(x)
3x2sin(x)+tan(x)3 x^{2} \sin{\left(x \right)} + \tan{\left(x \right)}
(3*x^2)*sin(x) + tan(x)
Detail solution
  1. Differentiate 3x2sin(x)+tan(x)3 x^{2} \sin{\left(x \right)} + \tan{\left(x \right)} term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=3x2f{\left(x \right)} = 3 x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 6x6 x

      g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result is: 3x2cos(x)+6xsin(x)3 x^{2} \cos{\left(x \right)} + 6 x \sin{\left(x \right)}

    2. Rewrite the function to be differentiated:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    3. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Now plug in to the quotient rule:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    The result is: 3x2cos(x)+6xsin(x)+sin2(x)+cos2(x)cos2(x)3 x^{2} \cos{\left(x \right)} + 6 x \sin{\left(x \right)} + \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

  2. Now simplify:

    3x2cos3(x)6xsin3(x)+6xsin(x)+1cos2(x)\frac{3 x^{2} \cos^{3}{\left(x \right)} - 6 x \sin^{3}{\left(x \right)} + 6 x \sin{\left(x \right)} + 1}{\cos^{2}{\left(x \right)}}


The answer is:

3x2cos3(x)6xsin3(x)+6xsin(x)+1cos2(x)\frac{3 x^{2} \cos^{3}{\left(x \right)} - 6 x \sin^{3}{\left(x \right)} + 6 x \sin{\left(x \right)} + 1}{\cos^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
       2         2                    
1 + tan (x) + 3*x *cos(x) + 6*x*sin(x)
3x2cos(x)+6xsin(x)+tan2(x)+13 x^{2} \cos{\left(x \right)} + 6 x \sin{\left(x \right)} + \tan^{2}{\left(x \right)} + 1
The second derivative [src]
              2            /       2   \                     
6*sin(x) - 3*x *sin(x) + 2*\1 + tan (x)/*tan(x) + 12*x*cos(x)
3x2sin(x)+12xcos(x)+2(tan2(x)+1)tan(x)+6sin(x)- 3 x^{2} \sin{\left(x \right)} + 12 x \cos{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 6 \sin{\left(x \right)}
The third derivative [src]
               2                                                                  
  /       2   \                                 2               2    /       2   \
2*\1 + tan (x)/  + 18*cos(x) - 18*x*sin(x) - 3*x *cos(x) + 4*tan (x)*\1 + tan (x)/
3x2cos(x)18xsin(x)+2(tan2(x)+1)2+4(tan2(x)+1)tan2(x)+18cos(x)- 3 x^{2} \cos{\left(x \right)} - 18 x \sin{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 18 \cos{\left(x \right)}