Mister Exam

Other calculators


3arcctgx+8x¼-(1/x)³

Derivative of 3arcctgx+8x¼-(1/x)³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                           3
                      /  1\ 
3*acot(x) + 8*x*1/4 - |1*-| 
                      \  x/ 
$$- \left(1 \cdot \frac{1}{x}\right)^{3} + 8 x \frac{1}{4} + 3 \operatorname{acot}{\left(x \right)}$$
  /                           3\
d |                      /  1\ |
--|3*acot(x) + 8*x*1/4 - |1*-| |
dx\                      \  x/ /
$$\frac{d}{d x} \left(- \left(1 \cdot \frac{1}{x}\right)^{3} + 8 x \frac{1}{4} + 3 \operatorname{acot}{\left(x \right)}\right)$$
The graph
The first derivative [src]
      3      3 
2 - ------ + --
         2    4
    1 + x    x 
$$2 - \frac{3}{x^{2} + 1} + \frac{3}{x^{4}}$$
The second derivative [src]
  /  2        x    \
6*|- -- + ---------|
  |   5           2|
  |  x    /     2\ |
  \       \1 + x / /
$$6 \left(\frac{x}{\left(x^{2} + 1\right)^{2}} - \frac{2}{x^{5}}\right)$$
The third derivative [src]
  /                       2  \
  |    1       10      4*x   |
6*|--------- + -- - ---------|
  |        2    6           3|
  |/     2\    x    /     2\ |
  \\1 + x /         \1 + x / /
$$6 \left(- \frac{4 x^{2}}{\left(x^{2} + 1\right)^{3}} + \frac{1}{\left(x^{2} + 1\right)^{2}} + \frac{10}{x^{6}}\right)$$
The graph
Derivative of 3arcctgx+8x¼-(1/x)³