Mister Exam

Derivative of 3arcsin(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /1\
3*asin|-|
      \x/
$$3 \operatorname{asin}{\left(\frac{1}{x} \right)}$$
3*asin(1/x)
The graph
The first derivative [src]
      -3        
----------------
        ________
 2     /     1  
x *   /  1 - -- 
     /        2 
   \/        x  
$$- \frac{3}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$
The second derivative [src]
  /         1     \
3*|2 + -----------|
  |     2 /    1 \|
  |    x *|1 - --||
  |       |     2||
  \       \    x //
-------------------
          ________ 
   3     /     1   
  x *   /  1 - --  
       /        2  
     \/        x   
$$\frac{3 \left(2 + \frac{1}{x^{2} \left(1 - \frac{1}{x^{2}}\right)}\right)}{x^{3} \sqrt{1 - \frac{1}{x^{2}}}}$$
The third derivative [src]
   /         3              7     \
-3*|6 + ------------ + -----------|
   |               2    2 /    1 \|
   |     4 /    1 \    x *|1 - --||
   |    x *|1 - --|       |     2||
   |       |     2|       \    x /|
   \       \    x /               /
-----------------------------------
                  ________         
           4     /     1           
          x *   /  1 - --          
               /        2          
             \/        x           
$$- \frac{3 \left(6 + \frac{7}{x^{2} \left(1 - \frac{1}{x^{2}}\right)} + \frac{3}{x^{4} \left(1 - \frac{1}{x^{2}}\right)^{2}}\right)}{x^{4} \sqrt{1 - \frac{1}{x^{2}}}}$$