Mister Exam

Other calculators

Derivative of 3a*sin(t^2)*cos(t)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       / 2\       
3*a*sin\t /*cos(t)
$$3 a \sin{\left(t^{2} \right)} \cos{\left(t \right)}$$
((3*a)*sin(t^2))*cos(t)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      So, the result is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
                / 2\                   / 2\
- 3*a*sin(t)*sin\t / + 6*a*t*cos(t)*cos\t /
$$6 a t \cos{\left(t \right)} \cos{\left(t^{2} \right)} - 3 a \sin{\left(t \right)} \sin{\left(t^{2} \right)}$$
The second derivative [src]
     /          / 2\     /     / 2\      2    / 2\\                 / 2\       \
-3*a*\cos(t)*sin\t / + 2*\- cos\t / + 2*t *sin\t //*cos(t) + 4*t*cos\t /*sin(t)/
$$- 3 a \left(4 t \sin{\left(t \right)} \cos{\left(t^{2} \right)} + 2 \left(2 t^{2} \sin{\left(t^{2} \right)} - \cos{\left(t^{2} \right)}\right) \cos{\left(t \right)} + \sin{\left(t^{2} \right)} \cos{\left(t \right)}\right)$$
The third derivative [src]
    /          / 2\     /     / 2\      2    / 2\\                        / 2\       /     / 2\      2    / 2\\       \
3*a*\sin(t)*sin\t / + 6*\- cos\t / + 2*t *sin\t //*sin(t) - 6*t*cos(t)*cos\t / - 4*t*\3*sin\t / + 2*t *cos\t //*cos(t)/
$$3 a \left(- 4 t \left(2 t^{2} \cos{\left(t^{2} \right)} + 3 \sin{\left(t^{2} \right)}\right) \cos{\left(t \right)} - 6 t \cos{\left(t \right)} \cos{\left(t^{2} \right)} + 6 \left(2 t^{2} \sin{\left(t^{2} \right)} - \cos{\left(t^{2} \right)}\right) \sin{\left(t \right)} + \sin{\left(t \right)} \sin{\left(t^{2} \right)}\right)$$