Mister Exam

Other calculators

  • How to use it?

  • Derivative of:
  • Derivative of x+3 Derivative of x+3
  • Derivative of e^2*x Derivative of e^2*x
  • Derivative of x^sin(x) Derivative of x^sin(x)
  • Derivative of sqrt(x^2+1) Derivative of sqrt(x^2+1)
  • Identical expressions

  • 3a*sin(t^ two)*cos(t)
  • 3a multiply by sinus of (t squared ) multiply by co sinus of e of (t)
  • 3a multiply by sinus of (t to the power of two) multiply by co sinus of e of (t)
  • 3a*sin(t2)*cos(t)
  • 3a*sint2*cost
  • 3a*sin(t²)*cos(t)
  • 3a*sin(t to the power of 2)*cos(t)
  • 3asin(t^2)cos(t)
  • 3asin(t2)cos(t)
  • 3asint2cost
  • 3asint^2cost

Derivative of 3a*sin(t^2)*cos(t)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       / 2\       
3*a*sin\t /*cos(t)
3asin(t2)cos(t)3 a \sin{\left(t^{2} \right)} \cos{\left(t \right)}
((3*a)*sin(t^2))*cos(t)
Detail solution
  1. Apply the product rule:

    ddtf(t)g(t)=f(t)ddtg(t)+g(t)ddtf(t)\frac{d}{d t} f{\left(t \right)} g{\left(t \right)} = f{\left(t \right)} \frac{d}{d t} g{\left(t \right)} + g{\left(t \right)} \frac{d}{d t} f{\left(t \right)}

    f(t)=3asin(t2)f{\left(t \right)} = 3 a \sin{\left(t^{2} \right)}; to find ddtf(t)\frac{d}{d t} f{\left(t \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=t2u = t^{2}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddtt2\frac{d}{d t} t^{2}:

        1. Apply the power rule: t2t^{2} goes to 2t2 t

        The result of the chain rule is:

        2tcos(t2)2 t \cos{\left(t^{2} \right)}

      So, the result is: 6atcos(t2)6 a t \cos{\left(t^{2} \right)}

    g(t)=cos(t)g{\left(t \right)} = \cos{\left(t \right)}; to find ddtg(t)\frac{d}{d t} g{\left(t \right)}:

    1. The derivative of cosine is negative sine:

      ddtcos(t)=sin(t)\frac{d}{d t} \cos{\left(t \right)} = - \sin{\left(t \right)}

    The result is: 6atcos(t)cos(t2)3asin(t)sin(t2)6 a t \cos{\left(t \right)} \cos{\left(t^{2} \right)} - 3 a \sin{\left(t \right)} \sin{\left(t^{2} \right)}

  2. Now simplify:

    3a(2tcos(t)cos(t2)sin(t)sin(t2))3 a \left(2 t \cos{\left(t \right)} \cos{\left(t^{2} \right)} - \sin{\left(t \right)} \sin{\left(t^{2} \right)}\right)


The answer is:

3a(2tcos(t)cos(t2)sin(t)sin(t2))3 a \left(2 t \cos{\left(t \right)} \cos{\left(t^{2} \right)} - \sin{\left(t \right)} \sin{\left(t^{2} \right)}\right)

The first derivative [src]
                / 2\                   / 2\
- 3*a*sin(t)*sin\t / + 6*a*t*cos(t)*cos\t /
6atcos(t)cos(t2)3asin(t)sin(t2)6 a t \cos{\left(t \right)} \cos{\left(t^{2} \right)} - 3 a \sin{\left(t \right)} \sin{\left(t^{2} \right)}
The second derivative [src]
     /          / 2\     /     / 2\      2    / 2\\                 / 2\       \
-3*a*\cos(t)*sin\t / + 2*\- cos\t / + 2*t *sin\t //*cos(t) + 4*t*cos\t /*sin(t)/
3a(4tsin(t)cos(t2)+2(2t2sin(t2)cos(t2))cos(t)+sin(t2)cos(t))- 3 a \left(4 t \sin{\left(t \right)} \cos{\left(t^{2} \right)} + 2 \left(2 t^{2} \sin{\left(t^{2} \right)} - \cos{\left(t^{2} \right)}\right) \cos{\left(t \right)} + \sin{\left(t^{2} \right)} \cos{\left(t \right)}\right)
The third derivative [src]
    /          / 2\     /     / 2\      2    / 2\\                        / 2\       /     / 2\      2    / 2\\       \
3*a*\sin(t)*sin\t / + 6*\- cos\t / + 2*t *sin\t //*sin(t) - 6*t*cos(t)*cos\t / - 4*t*\3*sin\t / + 2*t *cos\t //*cos(t)/
3a(4t(2t2cos(t2)+3sin(t2))cos(t)6tcos(t)cos(t2)+6(2t2sin(t2)cos(t2))sin(t)+sin(t)sin(t2))3 a \left(- 4 t \left(2 t^{2} \cos{\left(t^{2} \right)} + 3 \sin{\left(t^{2} \right)}\right) \cos{\left(t \right)} - 6 t \cos{\left(t \right)} \cos{\left(t^{2} \right)} + 6 \left(2 t^{2} \sin{\left(t^{2} \right)} - \cos{\left(t^{2} \right)}\right) \sin{\left(t \right)} + \sin{\left(t \right)} \sin{\left(t^{2} \right)}\right)