Mister Exam

Derivative of 3sinx-4cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*sin(x) - 4*cos(x)
3sin(x)4cos(x)3 \sin{\left(x \right)} - 4 \cos{\left(x \right)}
d                      
--(3*sin(x) - 4*cos(x))
dx                     
ddx(3sin(x)4cos(x))\frac{d}{d x} \left(3 \sin{\left(x \right)} - 4 \cos{\left(x \right)}\right)
Detail solution
  1. Differentiate 3sin(x)4cos(x)3 \sin{\left(x \right)} - 4 \cos{\left(x \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      So, the result is: 3cos(x)3 \cos{\left(x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        So, the result is: 4sin(x)- 4 \sin{\left(x \right)}

      So, the result is: 4sin(x)4 \sin{\left(x \right)}

    The result is: 4sin(x)+3cos(x)4 \sin{\left(x \right)} + 3 \cos{\left(x \right)}


The answer is:

4sin(x)+3cos(x)4 \sin{\left(x \right)} + 3 \cos{\left(x \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
3*cos(x) + 4*sin(x)
4sin(x)+3cos(x)4 \sin{\left(x \right)} + 3 \cos{\left(x \right)}
The second derivative [src]
-3*sin(x) + 4*cos(x)
3sin(x)+4cos(x)- 3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}
The third derivative [src]
-(3*cos(x) + 4*sin(x))
(4sin(x)+3cos(x))- (4 \sin{\left(x \right)} + 3 \cos{\left(x \right)})
The graph
Derivative of 3sinx-4cosx