3*sin(x) --------------- 2 3*x + 3*sin(x)
(3*sin(x))/(3*x^2 + 3*sin(x))
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
To find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3*cos(x) 3*(-6*x - 3*cos(x))*sin(x) --------------- + -------------------------- 2 2 3*x + 3*sin(x) / 2 \ \3*x + 3*sin(x)/
/ 2 \ | 2*(2*x + cos(x)) | |-2 + ----------------- + sin(x)|*sin(x) | 2 | \ x + sin(x) / 2*(2*x + cos(x))*cos(x) -sin(x) + ---------------------------------------- - ----------------------- 2 2 x + sin(x) x + sin(x) ---------------------------------------------------------------------------- 2 x + sin(x)
/ 3 \ | 6*(2*x + cos(x)) 6*(-2 + sin(x))*(2*x + cos(x))| / 2 \ |-cos(x) + ----------------- + ------------------------------|*sin(x) | 2*(2*x + cos(x)) | | 2 2 | 3*|-2 + ----------------- + sin(x)|*cos(x) | / 2 \ x + sin(x) | | 2 | \ \x + sin(x)/ / 3*(2*x + cos(x))*sin(x) \ x + sin(x) / -cos(x) - --------------------------------------------------------------------- + ----------------------- + ------------------------------------------ 2 2 2 x + sin(x) x + sin(x) x + sin(x) ------------------------------------------------------------------------------------------------------------------------------------------------------ 2 x + sin(x)