Mister Exam

Other calculators

Derivative of 3sinx/(3x^2+3sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3*sin(x)   
---------------
   2           
3*x  + 3*sin(x)
3sin(x)3x2+3sin(x)\frac{3 \sin{\left(x \right)}}{3 x^{2} + 3 \sin{\left(x \right)}}
(3*sin(x))/(3*x^2 + 3*sin(x))
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=3sin(x)f{\left(x \right)} = 3 \sin{\left(x \right)} and g(x)=3x2+3sin(x)g{\left(x \right)} = 3 x^{2} + 3 \sin{\left(x \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      So, the result is: 3cos(x)3 \cos{\left(x \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 3x2+3sin(x)3 x^{2} + 3 \sin{\left(x \right)} term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 6x6 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        So, the result is: 3cos(x)3 \cos{\left(x \right)}

      The result is: 6x+3cos(x)6 x + 3 \cos{\left(x \right)}

    Now plug in to the quotient rule:

    3(6x+3cos(x))sin(x)+3(3x2+3sin(x))cos(x)(3x2+3sin(x))2\frac{- 3 \left(6 x + 3 \cos{\left(x \right)}\right) \sin{\left(x \right)} + 3 \left(3 x^{2} + 3 \sin{\left(x \right)}\right) \cos{\left(x \right)}}{\left(3 x^{2} + 3 \sin{\left(x \right)}\right)^{2}}

  2. Now simplify:

    x(xcos(x)2sin(x))(x2+sin(x))2\frac{x \left(x \cos{\left(x \right)} - 2 \sin{\left(x \right)}\right)}{\left(x^{2} + \sin{\left(x \right)}\right)^{2}}


The answer is:

x(xcos(x)2sin(x))(x2+sin(x))2\frac{x \left(x \cos{\left(x \right)} - 2 \sin{\left(x \right)}\right)}{\left(x^{2} + \sin{\left(x \right)}\right)^{2}}

The graph
02468-8-6-4-2-1010-1000500
The first derivative [src]
    3*cos(x)      3*(-6*x - 3*cos(x))*sin(x)
--------------- + --------------------------
   2                                   2    
3*x  + 3*sin(x)       /   2           \     
                      \3*x  + 3*sin(x)/     
3(6x3cos(x))sin(x)(3x2+3sin(x))2+3cos(x)3x2+3sin(x)\frac{3 \left(- 6 x - 3 \cos{\left(x \right)}\right) \sin{\left(x \right)}}{\left(3 x^{2} + 3 \sin{\left(x \right)}\right)^{2}} + \frac{3 \cos{\left(x \right)}}{3 x^{2} + 3 \sin{\left(x \right)}}
The second derivative [src]
          /                     2         \                                 
          |     2*(2*x + cos(x))          |                                 
          |-2 + ----------------- + sin(x)|*sin(x)                          
          |         2                     |                                 
          \        x  + sin(x)            /          2*(2*x + cos(x))*cos(x)
-sin(x) + ---------------------------------------- - -----------------------
                         2                                  2               
                        x  + sin(x)                        x  + sin(x)      
----------------------------------------------------------------------------
                                 2                                          
                                x  + sin(x)                                 
2(2x+cos(x))cos(x)x2+sin(x)sin(x)+(2(2x+cos(x))2x2+sin(x)+sin(x)2)sin(x)x2+sin(x)x2+sin(x)\frac{- \frac{2 \left(2 x + \cos{\left(x \right)}\right) \cos{\left(x \right)}}{x^{2} + \sin{\left(x \right)}} - \sin{\left(x \right)} + \frac{\left(\frac{2 \left(2 x + \cos{\left(x \right)}\right)^{2}}{x^{2} + \sin{\left(x \right)}} + \sin{\left(x \right)} - 2\right) \sin{\left(x \right)}}{x^{2} + \sin{\left(x \right)}}}{x^{2} + \sin{\left(x \right)}}
The third derivative [src]
          /                          3                                 \                                                                              
          |          6*(2*x + cos(x))    6*(-2 + sin(x))*(2*x + cos(x))|                                      /                     2         \       
          |-cos(x) + ----------------- + ------------------------------|*sin(x)                               |     2*(2*x + cos(x))          |       
          |                         2              2                   |                                    3*|-2 + ----------------- + sin(x)|*cos(x)
          |            / 2         \              x  + sin(x)          |                                      |         2                     |       
          \            \x  + sin(x)/                                   /          3*(2*x + cos(x))*sin(x)     \        x  + sin(x)            /       
-cos(x) - --------------------------------------------------------------------- + ----------------------- + ------------------------------------------
                                        2                                                2                                  2                         
                                       x  + sin(x)                                      x  + sin(x)                        x  + sin(x)                
------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                      2                                                                               
                                                                     x  + sin(x)                                                                      
3(2x+cos(x))sin(x)x2+sin(x)cos(x)+3(2(2x+cos(x))2x2+sin(x)+sin(x)2)cos(x)x2+sin(x)(6(2x+cos(x))3(x2+sin(x))2+6(2x+cos(x))(sin(x)2)x2+sin(x)cos(x))sin(x)x2+sin(x)x2+sin(x)\frac{\frac{3 \left(2 x + \cos{\left(x \right)}\right) \sin{\left(x \right)}}{x^{2} + \sin{\left(x \right)}} - \cos{\left(x \right)} + \frac{3 \left(\frac{2 \left(2 x + \cos{\left(x \right)}\right)^{2}}{x^{2} + \sin{\left(x \right)}} + \sin{\left(x \right)} - 2\right) \cos{\left(x \right)}}{x^{2} + \sin{\left(x \right)}} - \frac{\left(\frac{6 \left(2 x + \cos{\left(x \right)}\right)^{3}}{\left(x^{2} + \sin{\left(x \right)}\right)^{2}} + \frac{6 \left(2 x + \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} - 2\right)}{x^{2} + \sin{\left(x \right)}} - \cos{\left(x \right)}\right) \sin{\left(x \right)}}{x^{2} + \sin{\left(x \right)}}}{x^{2} + \sin{\left(x \right)}}