Mister Exam

Derivative of 2xln(x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*x*log(x - 1)
2xlog(x1)2 x \log{\left(x - 1 \right)}
(2*x)*log(x - 1)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2xf{\left(x \right)} = 2 x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 22

    g(x)=log(x1)g{\left(x \right)} = \log{\left(x - 1 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x1u = x - 1.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(x1)\frac{d}{d x} \left(x - 1\right):

      1. Differentiate x1x - 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 1-1 is zero.

        The result is: 11

      The result of the chain rule is:

      1x1\frac{1}{x - 1}

    The result is: 2xx1+2log(x1)\frac{2 x}{x - 1} + 2 \log{\left(x - 1 \right)}

  2. Now simplify:

    2(x+(x1)log(x1))x1\frac{2 \left(x + \left(x - 1\right) \log{\left(x - 1 \right)}\right)}{x - 1}


The answer is:

2(x+(x1)log(x1))x1\frac{2 \left(x + \left(x - 1\right) \log{\left(x - 1 \right)}\right)}{x - 1}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
                2*x 
2*log(x - 1) + -----
               x - 1
2xx1+2log(x1)\frac{2 x}{x - 1} + 2 \log{\left(x - 1 \right)}
The second derivative [src]
  /      x   \
2*|2 - ------|
  \    -1 + x/
--------------
    -1 + x    
2(xx1+2)x1\frac{2 \left(- \frac{x}{x - 1} + 2\right)}{x - 1}
7-я производная [src]
    /      6*x  \
240*|-7 + ------|
    \     -1 + x/
-----------------
            6    
    (-1 + x)     
240(6xx17)(x1)6\frac{240 \left(\frac{6 x}{x - 1} - 7\right)}{\left(x - 1\right)^{6}}
The third derivative [src]
  /      2*x  \
2*|-3 + ------|
  \     -1 + x/
---------------
           2   
   (-1 + x)    
2(2xx13)(x1)2\frac{2 \left(\frac{2 x}{x - 1} - 3\right)}{\left(x - 1\right)^{2}}