Mister Exam

Derivative of (2x+3)^100

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         100
(2*x + 3)   
(2x+3)100\left(2 x + 3\right)^{100}
(2*x + 3)^100
Detail solution
  1. Let u=2x+3u = 2 x + 3.

  2. Apply the power rule: u100u^{100} goes to 100u99100 u^{99}

  3. Then, apply the chain rule. Multiply by ddx(2x+3)\frac{d}{d x} \left(2 x + 3\right):

    1. Differentiate 2x+32 x + 3 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      2. The derivative of the constant 33 is zero.

      The result is: 22

    The result of the chain rule is:

    200(2x+3)99200 \left(2 x + 3\right)^{99}

  4. Now simplify:

    200(2x+3)99200 \left(2 x + 3\right)^{99}


The answer is:

200(2x+3)99200 \left(2 x + 3\right)^{99}

The graph
02468-8-6-4-2-10102e137-1e137
The first derivative [src]
             99
200*(2*x + 3)  
200(2x+3)99200 \left(2 x + 3\right)^{99}
The second derivative [src]
               98
39600*(3 + 2*x)  
39600(2x+3)9839600 \left(2 x + 3\right)^{98}
The third derivative [src]
                 97
7761600*(3 + 2*x)  
7761600(2x+3)977761600 \left(2 x + 3\right)^{97}
The graph
Derivative of (2x+3)^100