_________ / 2*x + 3 4 / ------- \/ x - 1
((2*x + 3)/(x - 1))^(1/4)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
_________ / 2*x + 3 / 1 2*x + 3 \ 4 / ------- *(x - 1)*|--------- - ----------| \/ x - 1 |2*(x - 1) 2| \ 4*(x - 1) / ---------------------------------------------- 2*x + 3
/ 3 + 2*x\ _________ | 2 - -------| / 3 + 2*x / 3 + 2*x\ | 8 4 -1 + x| 4 / ------- *|2 - -------|*|- ------- - ------ + -----------| \/ -1 + x \ -1 + x/ \ 3 + 2*x -1 + x 3 + 2*x / -------------------------------------------------------------- 16*(3 + 2*x)
/ 2 \ | / 3 + 2*x\ / 3 + 2*x\ / 3 + 2*x\ | _________ | 3*|2 - -------| |2 - -------| 3*|2 - -------| | / 3 + 2*x / 3 + 2*x\ | 1 2 1 \ -1 + x/ \ -1 + x/ \ -1 + x/ | 4 / ------- *|2 - -------|*|----------- + ---------- + ------------------ - --------------- + -------------- - ---------------------| \/ -1 + x \ -1 + x/ | 2 2 (-1 + x)*(3 + 2*x) 2 2 16*(-1 + x)*(3 + 2*x)| \2*(-1 + x) (3 + 2*x) 8*(3 + 2*x) 64*(3 + 2*x) / -------------------------------------------------------------------------------------------------------------------------------------- 3 + 2*x