Mister Exam

Derivative of 2x*sin(x)*cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*x*sin(x)*cos(x)
$$2 x \sin{\left(x \right)} \cos{\left(x \right)}$$
((2*x)*sin(x))*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                                        2   
(2*sin(x) + 2*x*cos(x))*cos(x) - 2*x*sin (x)
$$- 2 x \sin^{2}{\left(x \right)} + \left(2 x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) \cos{\left(x \right)}$$
The second derivative [src]
-2*((-2*cos(x) + x*sin(x))*cos(x) + 2*(x*cos(x) + sin(x))*sin(x) + x*cos(x)*sin(x))
$$- 2 \left(x \sin{\left(x \right)} \cos{\left(x \right)} + \left(x \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) \cos{\left(x \right)} + 2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}\right)$$
The third derivative [src]
  /     2                                                                                                   \
2*\x*sin (x) - (3*sin(x) + x*cos(x))*cos(x) - 3*(x*cos(x) + sin(x))*cos(x) + 3*(-2*cos(x) + x*sin(x))*sin(x)/
$$2 \left(x \sin^{2}{\left(x \right)} + 3 \left(x \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) \sin{\left(x \right)} - 3 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos{\left(x \right)} - \left(x \cos{\left(x \right)} + 3 \sin{\left(x \right)}\right) \cos{\left(x \right)}\right)$$