Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
; to find :
-
The derivative of sine is cosine:
The result is:
; to find :
-
The derivative of cosine is negative sine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
2
(2*sin(x) + 2*x*cos(x))*cos(x) - 2*x*sin (x)
$$- 2 x \sin^{2}{\left(x \right)} + \left(2 x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) \cos{\left(x \right)}$$
The second derivative
[src]
-2*((-2*cos(x) + x*sin(x))*cos(x) + 2*(x*cos(x) + sin(x))*sin(x) + x*cos(x)*sin(x))
$$- 2 \left(x \sin{\left(x \right)} \cos{\left(x \right)} + \left(x \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) \cos{\left(x \right)} + 2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}\right)$$
The third derivative
[src]
/ 2 \
2*\x*sin (x) - (3*sin(x) + x*cos(x))*cos(x) - 3*(x*cos(x) + sin(x))*cos(x) + 3*(-2*cos(x) + x*sin(x))*sin(x)/
$$2 \left(x \sin^{2}{\left(x \right)} + 3 \left(x \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) \sin{\left(x \right)} - 3 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos{\left(x \right)} - \left(x \cos{\left(x \right)} + 3 \sin{\left(x \right)}\right) \cos{\left(x \right)}\right)$$