Mister Exam

Other calculators


(2x-x^3)^10

Derivative of (2x-x^3)^10

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          10
/       3\  
\2*x - x /  
$$\left(- x^{3} + 2 x\right)^{10}$$
  /          10\
d |/       3\  |
--\\2*x - x /  /
dx              
$$\frac{d}{d x} \left(- x^{3} + 2 x\right)^{10}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          9             
/       3\  /         2\
\2*x - x / *\20 - 30*x /
$$\left(- 30 x^{2} + 20\right) \left(- x^{3} + 2 x\right)^{9}$$
The second derivative [src]
               8 /             2                 \
    8 /      2\  |  /        2\       2 /      2\|
30*x *\-2 + x / *\3*\-2 + 3*x /  + 2*x *\-2 + x //
$$30 x^{8} \left(x^{2} - 2\right)^{8} \cdot \left(2 x^{2} \left(x^{2} - 2\right) + 3 \left(3 x^{2} - 2\right)^{2}\right)$$
The third derivative [src]
               7 /              3               2                              \
    7 /      2\  |   /        2\     2 /      2\        2 /      2\ /        2\|
60*x *\-2 + x / *\12*\-2 + 3*x /  + x *\-2 + x /  + 27*x *\-2 + x /*\-2 + 3*x //
$$60 x^{7} \left(x^{2} - 2\right)^{7} \left(x^{2} \left(x^{2} - 2\right)^{2} + 27 x^{2} \left(x^{2} - 2\right) \left(3 x^{2} - 2\right) + 12 \left(3 x^{2} - 2\right)^{3}\right)$$
The graph
Derivative of (2x-x^3)^10