Mister Exam

You entered:

2x³-1/x²

What you mean?

Derivative of 2x³-1/x²

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3     1 
2*x  - 1*--
          2
         x 
2x311x22 x^{3} - 1 \cdot \frac{1}{x^{2}}
d /   3     1 \
--|2*x  - 1*--|
dx|          2|
  \         x /
ddx(2x311x2)\frac{d}{d x} \left(2 x^{3} - 1 \cdot \frac{1}{x^{2}}\right)
Detail solution
  1. Differentiate 2x311x22 x^{3} - 1 \cdot \frac{1}{x^{2}} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      So, the result is: 6x26 x^{2}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=x2u = x^{2}.

      2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        The result of the chain rule is:

        2x3- \frac{2}{x^{3}}

      So, the result is: 2x3\frac{2}{x^{3}}

    The result is: 6x2+2x36 x^{2} + \frac{2}{x^{3}}

  2. Now simplify:

    2(3x5+1)x3\frac{2 \cdot \left(3 x^{5} + 1\right)}{x^{3}}


The answer is:

2(3x5+1)x3\frac{2 \cdot \left(3 x^{5} + 1\right)}{x^{3}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
2       2
-- + 6*x 
 3       
x        
6x2+2x36 x^{2} + \frac{2}{x^{3}}
The second derivative [src]
  /  1       \
6*|- -- + 2*x|
  |   4      |
  \  x       /
6(2x1x4)6 \cdot \left(2 x - \frac{1}{x^{4}}\right)
The third derivative [src]
   /    2 \
12*|1 + --|
   |     5|
   \    x /
12(1+2x5)12 \cdot \left(1 + \frac{2}{x^{5}}\right)
The graph
Derivative of 2x³-1/x²