Mister Exam

Derivative of √(2x²-4x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________________
  /    2           
\/  2*x  - 4*x + 1 
$$\sqrt{2 x^{2} - 4 x + 1}$$
  /   ________________\
d |  /    2           |
--\\/  2*x  - 4*x + 1 /
dx                     
$$\frac{d}{d x} \sqrt{2 x^{2} - 4 x + 1}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      3. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      -2 + 2*x     
-------------------
   ________________
  /    2           
\/  2*x  - 4*x + 1 
$$\frac{2 x - 2}{\sqrt{2 x^{2} - 4 x + 1}}$$
The second derivative [src]
  /               2  \
  |     2*(-1 + x)   |
2*|1 - --------------|
  |                 2|
  \    1 - 4*x + 2*x /
----------------------
    ________________  
   /              2   
 \/  1 - 4*x + 2*x    
$$\frac{2 \left(- \frac{2 \left(x - 1\right)^{2}}{2 x^{2} - 4 x + 1} + 1\right)}{\sqrt{2 x^{2} - 4 x + 1}}$$
The third derivative [src]
            /                2  \
            |      2*(-1 + x)   |
12*(-1 + x)*|-1 + --------------|
            |                  2|
            \     1 - 4*x + 2*x /
---------------------------------
                       3/2       
       /             2\          
       \1 - 4*x + 2*x /          
$$\frac{12 \left(x - 1\right) \left(\frac{2 \left(x - 1\right)^{2}}{2 x^{2} - 4 x + 1} - 1\right)}{\left(2 x^{2} - 4 x + 1\right)^{\frac{3}{2}}}$$
The graph
Derivative of √(2x²-4x+1)