Mister Exam

Derivative of 2lnx-3cosx+arctgx-5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*log(x) - 3*cos(x) + acot(x) - 5
$$\left(\left(2 \log{\left(x \right)} - 3 \cos{\left(x \right)}\right) + \operatorname{acot}{\left(x \right)}\right) - 5$$
2*log(x) - 3*cos(x) + acot(x) - 5
The graph
The first derivative [src]
    1      2           
- ------ + - + 3*sin(x)
       2   x           
  1 + x                
$$3 \sin{\left(x \right)} - \frac{1}{x^{2} + 1} + \frac{2}{x}$$
The second derivative [src]
  2                  2*x   
- -- + 3*cos(x) + ---------
   2                      2
  x               /     2\ 
                  \1 + x / 
$$\frac{2 x}{\left(x^{2} + 1\right)^{2}} + 3 \cos{\left(x \right)} - \frac{2}{x^{2}}$$
The third derivative [src]
                                   2  
                2       4       8*x   
-3*sin(x) + --------- + -- - ---------
                    2    3           3
            /     2\    x    /     2\ 
            \1 + x /         \1 + x / 
$$- \frac{8 x^{2}}{\left(x^{2} + 1\right)^{3}} - 3 \sin{\left(x \right)} + \frac{2}{\left(x^{2} + 1\right)^{2}} + \frac{4}{x^{3}}$$