Mister Exam

Other calculators

Derivative of 2sinx/cos^3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*sin(x)
--------
   3    
cos (x) 
$$\frac{2 \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$
(2*sin(x))/cos(x)^3
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

      So, the result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                2   
2*cos(x)   6*sin (x)
-------- + ---------
   3           4    
cos (x)     cos (x) 
$$\frac{6 \sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}} + \frac{2 \cos{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$
The second derivative [src]
  /          2   \       
  |    12*sin (x)|       
2*|8 + ----------|*sin(x)
  |        2     |       
  \     cos (x)  /       
-------------------------
            3            
         cos (x)         
$$\frac{2 \left(\frac{12 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 8\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$
The third derivative [src]
  /                           /           2   \\
  |                      2    |     20*sin (x)||
  |                 3*sin (x)*|11 + ----------||
  |          2                |         2     ||
  |    27*sin (x)             \      cos (x)  /|
2*|8 + ---------- + ---------------------------|
  |        2                     2             |
  \     cos (x)               cos (x)          /
------------------------------------------------
                       2                        
                    cos (x)                     
$$\frac{2 \left(\frac{3 \left(\frac{20 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 11\right) \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{27 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 8\right)}{\cos^{2}{\left(x \right)}}$$