2*sin(x) -------- 3 cos (x)
(2*sin(x))/cos(x)^3
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 2*cos(x) 6*sin (x) -------- + --------- 3 4 cos (x) cos (x)
/ 2 \
| 12*sin (x)|
2*|8 + ----------|*sin(x)
| 2 |
\ cos (x) /
-------------------------
3
cos (x)
/ / 2 \\
| 2 | 20*sin (x)||
| 3*sin (x)*|11 + ----------||
| 2 | 2 ||
| 27*sin (x) \ cos (x) /|
2*|8 + ---------- + ---------------------------|
| 2 2 |
\ cos (x) cos (x) /
------------------------------------------------
2
cos (x)