Mister Exam

Derivative of 2sin5x-3ctg5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*sin(5*x) - 3*cot(5*x)
2sin(5x)3cot(5x)2 \sin{\left(5 x \right)} - 3 \cot{\left(5 x \right)}
2*sin(5*x) - 3*cot(5*x)
Detail solution
  1. Differentiate 2sin(5x)3cot(5x)2 \sin{\left(5 x \right)} - 3 \cot{\left(5 x \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=5xu = 5 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5cos(5x)5 \cos{\left(5 x \right)}

      So, the result is: 10cos(5x)10 \cos{\left(5 x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(5x)=1tan(5x)\cot{\left(5 x \right)} = \frac{1}{\tan{\left(5 x \right)}}

        2. Let u=tan(5x)u = \tan{\left(5 x \right)}.

        3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

        4. Then, apply the chain rule. Multiply by ddxtan(5x)\frac{d}{d x} \tan{\left(5 x \right)}:

          1. Rewrite the function to be differentiated:

            tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

          2. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=sin(5x)f{\left(x \right)} = \sin{\left(5 x \right)} and g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. Let u=5xu = 5 x.

            2. The derivative of sine is cosine:

              ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 55

              The result of the chain rule is:

              5cos(5x)5 \cos{\left(5 x \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. Let u=5xu = 5 x.

            2. The derivative of cosine is negative sine:

              dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 55

              The result of the chain rule is:

              5sin(5x)- 5 \sin{\left(5 x \right)}

            Now plug in to the quotient rule:

            5sin2(5x)+5cos2(5x)cos2(5x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}

          The result of the chain rule is:

          5sin2(5x)+5cos2(5x)cos2(5x)tan2(5x)- \frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(5x)=cos(5x)sin(5x)\cot{\left(5 x \right)} = \frac{\cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=cos(5x)f{\left(x \right)} = \cos{\left(5 x \right)} and g(x)=sin(5x)g{\left(x \right)} = \sin{\left(5 x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=5xu = 5 x.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 55

            The result of the chain rule is:

            5sin(5x)- 5 \sin{\left(5 x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=5xu = 5 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 55

            The result of the chain rule is:

            5cos(5x)5 \cos{\left(5 x \right)}

          Now plug in to the quotient rule:

          5sin2(5x)5cos2(5x)sin2(5x)\frac{- 5 \sin^{2}{\left(5 x \right)} - 5 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}

      So, the result is: 3(5sin2(5x)+5cos2(5x))cos2(5x)tan2(5x)\frac{3 \left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right)}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}}

    The result is: 3(5sin2(5x)+5cos2(5x))cos2(5x)tan2(5x)+10cos(5x)\frac{3 \left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right)}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}} + 10 \cos{\left(5 x \right)}

  2. Now simplify:

    10cos(5x)+15sin2(5x)10 \cos{\left(5 x \right)} + \frac{15}{\sin^{2}{\left(5 x \right)}}


The answer is:

10cos(5x)+15sin2(5x)10 \cos{\left(5 x \right)} + \frac{15}{\sin^{2}{\left(5 x \right)}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
                         2     
15 + 10*cos(5*x) + 15*cot (5*x)
10cos(5x)+15cot2(5x)+1510 \cos{\left(5 x \right)} + 15 \cot^{2}{\left(5 x \right)} + 15
The second derivative [src]
    /  /       2     \                    \
-50*\3*\1 + cot (5*x)/*cot(5*x) + sin(5*x)/
50(3(cot2(5x)+1)cot(5x)+sin(5x))- 50 \left(3 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot{\left(5 x \right)} + \sin{\left(5 x \right)}\right)
The third derivative [src]
    /                             2                              \
    |              /       2     \         2      /       2     \|
250*\-cos(5*x) + 3*\1 + cot (5*x)/  + 6*cot (5*x)*\1 + cot (5*x)//
250(3(cot2(5x)+1)2+6(cot2(5x)+1)cot2(5x)cos(5x))250 \left(3 \left(\cot^{2}{\left(5 x \right)} + 1\right)^{2} + 6 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot^{2}{\left(5 x \right)} - \cos{\left(5 x \right)}\right)