2*cos(t) -------- - sin(t) sin(2*t)
(2*cos(t))/sin(2*t) - sin(t)
Differentiate term by term:
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result is:
Now simplify:
The answer is:
2*sin(t) 4*cos(t)*cos(2*t) -cos(t) - -------- - ----------------- sin(2*t) 2 sin (2*t)
2 6*cos(t) 8*cos(2*t)*sin(t) 16*cos (2*t)*cos(t) -------- + ----------------- + ------------------- + sin(t) sin(2*t) 2 3 sin (2*t) sin (2*t)
3 2 22*sin(t) 96*cos (2*t)*cos(t) 68*cos(t)*cos(2*t) 48*cos (2*t)*sin(t) - --------- - ------------------- - ------------------ - ------------------- + cos(t) sin(2*t) 4 2 3 sin (2*t) sin (2*t) sin (2*t)
3 2 22*sin(t) 96*cos (2*t)*cos(t) 68*cos(t)*cos(2*t) 48*cos (2*t)*sin(t) - --------- - ------------------- - ------------------ - ------------------- + cos(t) sin(2*t) 4 2 3 sin (2*t) sin (2*t) sin (2*t)