Mister Exam

Derivative of 2cost/sin2t-sint

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*cos(t)         
-------- - sin(t)
sin(2*t)         
$$- \sin{\left(t \right)} + \frac{2 \cos{\left(t \right)}}{\sin{\left(2 t \right)}}$$
(2*cos(t))/sin(2*t) - sin(t)
Detail solution
  1. Differentiate term by term:

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          2*sin(t)   4*cos(t)*cos(2*t)
-cos(t) - -------- - -----------------
          sin(2*t)          2         
                         sin (2*t)    
$$- \frac{2 \sin{\left(t \right)}}{\sin{\left(2 t \right)}} - \cos{\left(t \right)} - \frac{4 \cos{\left(t \right)} \cos{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}}$$
The second derivative [src]
                                     2                     
6*cos(t)   8*cos(2*t)*sin(t)   16*cos (2*t)*cos(t)         
-------- + ----------------- + ------------------- + sin(t)
sin(2*t)          2                    3                   
               sin (2*t)            sin (2*t)              
$$\sin{\left(t \right)} + \frac{8 \sin{\left(t \right)} \cos{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}} + \frac{6 \cos{\left(t \right)}}{\sin{\left(2 t \right)}} + \frac{16 \cos{\left(t \right)} \cos^{2}{\left(2 t \right)}}{\sin^{3}{\left(2 t \right)}}$$
The third derivative [src]
                    3                                          2                     
  22*sin(t)   96*cos (2*t)*cos(t)   68*cos(t)*cos(2*t)   48*cos (2*t)*sin(t)         
- --------- - ------------------- - ------------------ - ------------------- + cos(t)
   sin(2*t)           4                    2                     3                   
                   sin (2*t)            sin (2*t)             sin (2*t)              
$$- \frac{22 \sin{\left(t \right)}}{\sin{\left(2 t \right)}} - \frac{48 \sin{\left(t \right)} \cos^{2}{\left(2 t \right)}}{\sin^{3}{\left(2 t \right)}} + \cos{\left(t \right)} - \frac{68 \cos{\left(t \right)} \cos{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}} - \frac{96 \cos{\left(t \right)} \cos^{3}{\left(2 t \right)}}{\sin^{4}{\left(2 t \right)}}$$
3-я производная [src]
                    3                                          2                     
  22*sin(t)   96*cos (2*t)*cos(t)   68*cos(t)*cos(2*t)   48*cos (2*t)*sin(t)         
- --------- - ------------------- - ------------------ - ------------------- + cos(t)
   sin(2*t)           4                    2                     3                   
                   sin (2*t)            sin (2*t)             sin (2*t)              
$$- \frac{22 \sin{\left(t \right)}}{\sin{\left(2 t \right)}} - \frac{48 \sin{\left(t \right)} \cos^{2}{\left(2 t \right)}}{\sin^{3}{\left(2 t \right)}} + \cos{\left(t \right)} - \frac{68 \cos{\left(t \right)} \cos{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}} - \frac{96 \cos{\left(t \right)} \cos^{3}{\left(2 t \right)}}{\sin^{4}{\left(2 t \right)}}$$