Mister Exam

Derivative of (2cos(2t))/(sin(2t))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*cos(2*t)
----------
 sin(2*t) 
$$\frac{2 \cos{\left(2 t \right)}}{\sin{\left(2 t \right)}}$$
(2*cos(2*t))/sin(2*t)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      So, the result is:

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          2     
     4*cos (2*t)
-4 - -----------
         2      
      sin (2*t) 
$$-4 - \frac{4 \cos^{2}{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}}$$
The second derivative [src]
  /         2     \         
  |    2*cos (2*t)|         
8*|2 + -----------|*cos(2*t)
  |        2      |         
  \     sin (2*t) /         
----------------------------
          sin(2*t)          
$$\frac{8 \left(2 + \frac{2 \cos^{2}{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}}\right) \cos{\left(2 t \right)}}{\sin{\left(2 t \right)}}$$
The third derivative [src]
    /                            /         2     \\
    |                     2      |    6*cos (2*t)||
    |                  cos (2*t)*|5 + -----------||
    |         2                  |        2      ||
    |    3*cos (2*t)             \     sin (2*t) /|
-16*|2 + ----------- + ---------------------------|
    |        2                     2              |
    \     sin (2*t)             sin (2*t)         /
$$- 16 \left(\frac{\left(5 + \frac{6 \cos^{2}{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}}\right) \cos^{2}{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}} + 2 + \frac{3 \cos^{2}{\left(2 t \right)}}{\sin^{2}{\left(2 t \right)}}\right)$$