Mister Exam

Derivative of 12log11(x)+6arctgx-2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    log(x)                  
12*------- + 6*acot(x) - 2*x
   log(11)                  
$$- 2 x + \left(12 \frac{\log{\left(x \right)}}{\log{\left(11 \right)}} + 6 \operatorname{acot}{\left(x \right)}\right)$$
12*(log(x)/log(11)) + 6*acot(x) - 2*x
The graph
The first derivative [src]
       6          12   
-2 - ------ + ---------
          2   x*log(11)
     1 + x             
$$-2 - \frac{6}{x^{2} + 1} + \frac{12}{x \log{\left(11 \right)}}$$
The second derivative [src]
   /    x           1     \
12*|--------- - ----------|
   |        2    2        |
   |/     2\    x *log(11)|
   \\1 + x /              /
$$12 \left(\frac{x}{\left(x^{2} + 1\right)^{2}} - \frac{1}{x^{2} \log{\left(11 \right)}}\right)$$
The third derivative [src]
   /                  2               \
   |    1          4*x          2     |
12*|--------- - --------- + ----------|
   |        2           3    3        |
   |/     2\    /     2\    x *log(11)|
   \\1 + x /    \1 + x /              /
$$12 \left(- \frac{4 x^{2}}{\left(x^{2} + 1\right)^{3}} + \frac{1}{\left(x^{2} + 1\right)^{2}} + \frac{2}{x^{3} \log{\left(11 \right)}}\right)$$