Given equation of the surface of 2-order:
− 2 x 2 − 3 y 2 + z = 0 - 2 x^{2} - 3 y^{2} + z = 0 − 2 x 2 − 3 y 2 + z = 0 This equation looks like:
a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 y z + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0 a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 yz + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 where
a 11 = − 2 a_{11} = -2 a 11 = − 2 a 12 = 0 a_{12} = 0 a 12 = 0 a 13 = 0 a_{13} = 0 a 13 = 0 a 14 = 0 a_{14} = 0 a 14 = 0 a 22 = − 3 a_{22} = -3 a 22 = − 3 a 23 = 0 a_{23} = 0 a 23 = 0 a 24 = 0 a_{24} = 0 a 24 = 0 a 33 = 0 a_{33} = 0 a 33 = 0 a 34 = 1 2 a_{34} = \frac{1}{2} a 34 = 2 1 a 44 = 0 a_{44} = 0 a 44 = 0 The invariants of the equation when converting coordinates are determinants:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| substitute coefficients
I 1 = − 5 I_{1} = -5 I 1 = − 5 |-2 0 | |-3 0| |-2 0|
I2 = | | + | | + | |
|0 -3| |0 0| |0 0| I 3 = ∣ − 2 0 0 0 − 3 0 0 0 0 ∣ I_{3} = \left|\begin{matrix}-2 & 0 & 0\\0 & -3 & 0\\0 & 0 & 0\end{matrix}\right| I 3 = − 2 0 0 0 − 3 0 0 0 0 I 4 = ∣ − 2 0 0 0 0 − 3 0 0 0 0 0 1 2 0 0 1 2 0 ∣ I_{4} = \left|\begin{matrix}-2 & 0 & 0 & 0\\0 & -3 & 0 & 0\\0 & 0 & 0 & \frac{1}{2}\\0 & 0 & \frac{1}{2} & 0\end{matrix}\right| I 4 = − 2 0 0 0 0 − 3 0 0 0 0 0 2 1 0 0 2 1 0 I ( λ ) = ∣ − λ − 2 0 0 0 − λ − 3 0 0 0 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda - 2 & 0 & 0\\0 & - \lambda - 3 & 0\\0 & 0 & - \lambda\end{matrix}\right| I ( λ ) = − λ − 2 0 0 0 − λ − 3 0 0 0 − λ |-2 0| |-3 0| | 0 1/2|
K2 = | | + | | + | |
|0 0| |0 0| |1/2 0 | |-2 0 0| |-3 0 0 | |-2 0 0 |
| | | | | |
K3 = |0 -3 0| + |0 0 1/2| + |0 0 1/2|
| | | | | |
|0 0 0| |0 1/2 0 | |0 1/2 0 | I 1 = − 5 I_{1} = -5 I 1 = − 5 I 2 = 6 I_{2} = 6 I 2 = 6 I 3 = 0 I_{3} = 0 I 3 = 0 I 4 = − 3 2 I_{4} = - \frac{3}{2} I 4 = − 2 3 I ( λ ) = − λ 3 − 5 λ 2 − 6 λ I{\left(\lambda \right)} = - \lambda^{3} - 5 \lambda^{2} - 6 \lambda I ( λ ) = − λ 3 − 5 λ 2 − 6 λ K 2 = − 1 4 K_{2} = - \frac{1}{4} K 2 = − 4 1 K 3 = 5 4 K_{3} = \frac{5}{4} K 3 = 4 5 Because
I 3 = 0 ∧ I 2 ≠ 0 ∧ I 4 ≠ 0 I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0 I 3 = 0 ∧ I 2 = 0 ∧ I 4 = 0 then by type of surface:
you need to
Make the characteristic equation for the surface:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 or
λ 3 + 5 λ 2 + 6 λ = 0 \lambda^{3} + 5 \lambda^{2} + 6 \lambda = 0 λ 3 + 5 λ 2 + 6 λ = 0 λ 1 = − 2 \lambda_{1} = -2 λ 1 = − 2 λ 2 = − 3 \lambda_{2} = -3 λ 2 = − 3 λ 3 = 0 \lambda_{3} = 0 λ 3 = 0 then the canonical form of the equation will be
z ~ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 z ~ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 and
− z ~ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 - \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 − z ~ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 − 2 x ~ 2 − 3 y ~ 2 + z ~ = 0 - 2 \tilde x^{2} - 3 \tilde y^{2} + \tilde z = 0 − 2 x ~ 2 − 3 y ~ 2 + z ~ = 0 and
− 2 x ~ 2 − 3 y ~ 2 − z ~ = 0 - 2 \tilde x^{2} - 3 \tilde y^{2} - \tilde z = 0 − 2 x ~ 2 − 3 y ~ 2 − z ~ = 0 2 2
\tilde x \tilde y
--------- + --------- - 2*\tilde z = 0
1/4 1/6 and
2 2
\tilde x \tilde y
--------- + --------- + 2*\tilde z = 0
1/4 1/6 this equation is fora type elliptical paraboloid
- reduced to canonical form