Mister Exam

xy+x+y canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
x + y + x*y = 0
xy+x+y=0x y + x + y = 0
x*y + x + y = 0
Detail solution
Given line equation of 2-order:
xy+x+y=0x y + x + y = 0
This equation looks like:
a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0
where
a11=0a_{11} = 0
a12=12a_{12} = \frac{1}{2}
a13=12a_{13} = \frac{1}{2}
a22=0a_{22} = 0
a23=12a_{23} = \frac{1}{2}
a33=0a_{33} = 0
To calculate the determinant
Δ=a11a12a12a22\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|
or, substitute
Δ=012120\Delta = \left|\begin{matrix}0 & \frac{1}{2}\\\frac{1}{2} & 0\end{matrix}\right|
Δ=14\Delta = - \frac{1}{4}
Because
Δ\Delta
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
a11x0+a12y0+a13=0a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0
a12x0+a22y0+a23=0a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0
substitute coefficients
y02+12=0\frac{y_{0}}{2} + \frac{1}{2} = 0
x02+12=0\frac{x_{0}}{2} + \frac{1}{2} = 0
then
x0=1x_{0} = -1
y0=1y_{0} = -1
Thus, we have the equation in the coordinate system O'x'y'
a33+a11x2+2a12xy+a22y2=0a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0
where
a33=a13x0+a23y0+a33a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}
or
a33=x02+y02a'_{33} = \frac{x_{0}}{2} + \frac{y_{0}}{2}
a33=1a'_{33} = -1
then equation turns into
xy1=0x' y' - 1 = 0
Rotate the resulting coordinate system by an angle φ
x=x~cos(ϕ)y~sin(ϕ)x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}
y=x~sin(ϕ)+y~cos(ϕ)y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}
φ - determined from the formula
cot(2ϕ)=a11a222a12\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}
substitute coefficients
cot(2ϕ)=0\cot{\left(2 \phi \right)} = 0
then
ϕ=π4\phi = \frac{\pi}{4}
sin(2ϕ)=1\sin{\left(2 \phi \right)} = 1
cos(2ϕ)=0\cos{\left(2 \phi \right)} = 0
cos(ϕ)=cos(2ϕ)2+12\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}
sin(ϕ)=1cos2(ϕ)\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}
cos(ϕ)=22\cos{\left(\phi \right)} = \frac{\sqrt{2}}{2}
sin(ϕ)=22\sin{\left(\phi \right)} = \frac{\sqrt{2}}{2}
substitute coefficients
x=2x~22y~2x' = \frac{\sqrt{2} \tilde x}{2} - \frac{\sqrt{2} \tilde y}{2}
y=2x~2+2y~2y' = \frac{\sqrt{2} \tilde x}{2} + \frac{\sqrt{2} \tilde y}{2}
then the equation turns from
xy1=0x' y' - 1 = 0
to
(2x~22y~2)(2x~2+2y~2)1=0\left(\frac{\sqrt{2} \tilde x}{2} - \frac{\sqrt{2} \tilde y}{2}\right) \left(\frac{\sqrt{2} \tilde x}{2} + \frac{\sqrt{2} \tilde y}{2}\right) - 1 = 0
simplify
x~22y~221=0\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2} - 1 = 0
x~22+y~22+1=0- \frac{\tilde x^{2}}{2} + \frac{\tilde y^{2}}{2} + 1 = 0
Given equation is hyperbole
x~22y~22=1\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2} = 1
- reduced to canonical form
The center of canonical coordinate system at point O
(-1, -1)

Basis of the canonical coordinate system
e1=(22, 22)\vec e_1 = \left( \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)
e2=(22, 22)\vec e_2 = \left( - \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)
Invariants method
Given line equation of 2-order:
xy+x+y=0x y + x + y = 0
This equation looks like:
a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0
where
a11=0a_{11} = 0
a12=12a_{12} = \frac{1}{2}
a13=12a_{13} = \frac{1}{2}
a22=0a_{22} = 0
a23=12a_{23} = \frac{1}{2}
a33=0a_{33} = 0
The invariants of the equation when converting coordinates are determinants:
I1=a11+a22I_{1} = a_{11} + a_{22}
     |a11  a12|
I2 = |        |
     |a12  a22|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I(λ)=a11λa12a12a22λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
I1=0I_{1} = 0
     | 0   1/2|
I2 = |        |
     |1/2   0 |

I3=012121201212120I_{3} = \left|\begin{matrix}0 & \frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & 0 & \frac{1}{2}\\\frac{1}{2} & \frac{1}{2} & 0\end{matrix}\right|
I(λ)=λ1212λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & \frac{1}{2}\\\frac{1}{2} & - \lambda\end{matrix}\right|
     | 0   1/2|   | 0   1/2|
K2 = |        | + |        |
     |1/2   0 |   |1/2   0 |

I1=0I_{1} = 0
I2=14I_{2} = - \frac{1}{4}
I3=14I_{3} = \frac{1}{4}
I(λ)=λ214I{\left(\lambda \right)} = \lambda^{2} - \frac{1}{4}
K2=12K_{2} = - \frac{1}{2}
Because
I2<0I30I_{2} < 0 \wedge I_{3} \neq 0
then by line type:
this equation is of type : hyperbola
Make the characteristic equation for the line:
I1λ+I2+λ2=0- I_{1} \lambda + I_{2} + \lambda^{2} = 0
or
λ214=0\lambda^{2} - \frac{1}{4} = 0
λ1=12\lambda_{1} = - \frac{1}{2}
λ2=12\lambda_{2} = \frac{1}{2}
then the canonical form of the equation will be
x~2λ1+y~2λ2+I3I2=0\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0
or
x~22+y~221=0- \frac{\tilde x^{2}}{2} + \frac{\tilde y^{2}}{2} - 1 = 0
x~22y~22=1\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2} = -1
- reduced to canonical form