Mister Exam

xy+x-y=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
x - y + x*y = 0
$$x y + x - y = 0$$
x*y + x - y = 0
Detail solution
Given line equation of 2-order:
$$x y + x - y = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 0$$
$$a_{12} = \frac{1}{2}$$
$$a_{13} = \frac{1}{2}$$
$$a_{22} = 0$$
$$a_{23} = - \frac{1}{2}$$
$$a_{33} = 0$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}0 & \frac{1}{2}\\\frac{1}{2} & 0\end{matrix}\right|$$
$$\Delta = - \frac{1}{4}$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$\frac{y_{0}}{2} + \frac{1}{2} = 0$$
$$\frac{x_{0}}{2} - \frac{1}{2} = 0$$
then
$$x_{0} = 1$$
$$y_{0} = -1$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = \frac{x_{0}}{2} - \frac{y_{0}}{2}$$
$$a'_{33} = 1$$
then equation turns into
$$x' y' + 1 = 0$$
Rotate the resulting coordinate system by an angle φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = 0$$
then
$$\phi = \frac{\pi}{4}$$
$$\sin{\left(2 \phi \right)} = 1$$
$$\cos{\left(2 \phi \right)} = 0$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{\sqrt{2}}{2}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{2}}{2}$$
substitute coefficients
$$x' = \frac{\sqrt{2} \tilde x}{2} - \frac{\sqrt{2} \tilde y}{2}$$
$$y' = \frac{\sqrt{2} \tilde x}{2} + \frac{\sqrt{2} \tilde y}{2}$$
then the equation turns from
$$x' y' + 1 = 0$$
to
$$\left(\frac{\sqrt{2} \tilde x}{2} - \frac{\sqrt{2} \tilde y}{2}\right) \left(\frac{\sqrt{2} \tilde x}{2} + \frac{\sqrt{2} \tilde y}{2}\right) + 1 = 0$$
simplify
$$\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2} + 1 = 0$$
Given equation is hyperbole
$$\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2} = -1$$
- reduced to canonical form
The center of canonical coordinate system at point O
(1, -1)

Basis of the canonical coordinate system
$$\vec e_1 = \left( \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)$$
Invariants method
Given line equation of 2-order:
$$x y + x - y = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 0$$
$$a_{12} = \frac{1}{2}$$
$$a_{13} = \frac{1}{2}$$
$$a_{22} = 0$$
$$a_{23} = - \frac{1}{2}$$
$$a_{33} = 0$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 0$$
     | 0   1/2|
I2 = |        |
     |1/2   0 |

$$I_{3} = \left|\begin{matrix}0 & \frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & 0 & - \frac{1}{2}\\\frac{1}{2} & - \frac{1}{2} & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & \frac{1}{2}\\\frac{1}{2} & - \lambda\end{matrix}\right|$$
     | 0   1/2|   | 0    -1/2|
K2 = |        | + |          |
     |1/2   0 |   |-1/2   0  |

$$I_{1} = 0$$
$$I_{2} = - \frac{1}{4}$$
$$I_{3} = - \frac{1}{4}$$
$$I{\left(\lambda \right)} = \lambda^{2} - \frac{1}{4}$$
$$K_{2} = - \frac{1}{2}$$
Because
$$I_{2} < 0 \wedge I_{3} \neq 0$$
then by line type:
this equation is of type : hyperbola
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} - \frac{1}{4} = 0$$
$$\lambda_{1} = - \frac{1}{2}$$
$$\lambda_{2} = \frac{1}{2}$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$- \frac{\tilde x^{2}}{2} + \frac{\tilde y^{2}}{2} + 1 = 0$$
$$\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{2} = 1$$
- reduced to canonical form