Mister Exam

xy-2xz+yz canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
x*y + y*z - 2*x*z = 0
$$x y - 2 x z + y z = 0$$
x*y - 2*x*z + y*z = 0
Invariants method
Given equation of the surface of 2-order:
$$x y - 2 x z + y z = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
where
$$a_{11} = 0$$
$$a_{12} = \frac{1}{2}$$
$$a_{13} = -1$$
$$a_{14} = 0$$
$$a_{22} = 0$$
$$a_{23} = \frac{1}{2}$$
$$a_{24} = 0$$
$$a_{33} = 0$$
$$a_{34} = 0$$
$$a_{44} = 0$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 0$$
     | 0   1/2|   | 0   1/2|   |0   -1|
I2 = |        | + |        | + |      |
     |1/2   0 |   |1/2   0 |   |-1  0 |

$$I_{3} = \left|\begin{matrix}0 & \frac{1}{2} & -1\\\frac{1}{2} & 0 & \frac{1}{2}\\-1 & \frac{1}{2} & 0\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}0 & \frac{1}{2} & -1 & 0\\\frac{1}{2} & 0 & \frac{1}{2} & 0\\-1 & \frac{1}{2} & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & \frac{1}{2} & -1\\\frac{1}{2} & - \lambda & \frac{1}{2}\\-1 & \frac{1}{2} & - \lambda\end{matrix}\right|$$
     |0  0|   |0  0|   |0  0|
K2 = |    | + |    | + |    |
     |0  0|   |0  0|   |0  0|

     | 0   1/2  0|   | 0   1/2  0|   |0   -1  0|
     |           |   |           |   |         |
K3 = |1/2   0   0| + |1/2   0   0| + |-1  0   0|
     |           |   |           |   |         |
     | 0    0   0|   | 0    0   0|   |0   0   0|

$$I_{1} = 0$$
$$I_{2} = - \frac{3}{2}$$
$$I_{3} = - \frac{1}{2}$$
$$I_{4} = 0$$
$$I{\left(\lambda \right)} = - \lambda^{3} + \frac{3 \lambda}{2} - \frac{1}{2}$$
$$K_{2} = 0$$
$$K_{3} = 0$$
Because
I3 != 0

then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - \frac{3 \lambda}{2} + \frac{1}{2} = 0$$
$$\lambda_{1} = 1$$
$$\lambda_{2} = - \frac{\sqrt{3}}{2} - \frac{1}{2}$$
$$\lambda_{3} = - \frac{1}{2} + \frac{\sqrt{3}}{2}$$
then the canonical form of the equation will be
$$\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0$$
$$\tilde x^{2} + \tilde y^{2} \left(- \frac{\sqrt{3}}{2} - \frac{1}{2}\right) + \tilde z^{2} \left(- \frac{1}{2} + \frac{\sqrt{3}}{2}\right) = 0$$
$$- \frac{\tilde y^{2}}{\left(\frac{1}{\sqrt{\frac{1}{2} + \frac{\sqrt{3}}{2}}}\right)^{2}} + \left(\frac{\tilde x^{2}}{1^{2}} + \frac{\tilde z^{2}}{\left(\frac{1}{\sqrt{- \frac{1}{2} + \frac{\sqrt{3}}{2}}}\right)^{2}}\right) = 0$$
this equation is fora type cone
- reduced to canonical form