Mister Exam

x^2-2x+2 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
     2          
2 + x  - 2*x = 0
$$x^{2} - 2 x + 2 = 0$$
x^2 - 2*x + 2 = 0
Detail solution
Given line equation of 2-order:
$$x^{2} - 2 x + 2 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 1$$
$$a_{12} = 0$$
$$a_{13} = -1$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = 2$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}1 & 0\\0 & 0\end{matrix}\right|$$
$$\Delta = 0$$
Because
$$\Delta$$
is equal to 0, then
$$\left(\tilde x - 1\right)^{2} = -1$$
$$\tilde x'^{2} = -1$$
Given equation is two parallel straight lines
- reduced to canonical form
where replacement made
$$\tilde x' = \tilde x - 1$$
$$\tilde y' = \tilde y$$
The center of the canonical coordinate system in OXY
$$x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
$$x_{0} = 0 \cdot 0 + 1$$
$$y_{0} = 0$$
$$x_{0} = 1$$
$$y_{0} = 0$$
The center of canonical coordinate system at point O
(1, 0)

Basis of the canonical coordinate system
$$\vec e_1 = \left( 1, \ 0\right)$$
$$\vec e_2 = \left( 0, \ 1\right)$$
Invariants method
Given line equation of 2-order:
$$x^{2} - 2 x + 2 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 1$$
$$a_{12} = 0$$
$$a_{13} = -1$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = 2$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 1$$
     |1  0|
I2 = |    |
     |0  0|

$$I_{3} = \left|\begin{matrix}1 & 0 & -1\\0 & 0 & 0\\-1 & 0 & 2\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}1 - \lambda & 0\\0 & - \lambda\end{matrix}\right|$$
     |1   -1|   |0  0|
K2 = |      | + |    |
     |-1  2 |   |0  2|

$$I_{1} = 1$$
$$I_{2} = 0$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2} - \lambda$$
$$K_{2} = 1$$
Because
$$I_{2} = 0 \wedge I_{3} = 0 \wedge K_{2} > 0 \wedge I_{1} \neq 0$$
then by line type:
this equation is of type : two imaginary parallel lines
$$I_{1} \tilde y^{2} + \frac{K_{2}}{I_{1}} = 0$$
or
$$\tilde y^{2} + 1 = 0$$
None

- reduced to canonical form