Mister Exam

x^2-3x-10 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
       2          
-10 + x  - 3*x = 0
$$x^{2} - 3 x - 10 = 0$$
x^2 - 3*x - 10 = 0
Detail solution
Given line equation of 2-order:
$$x^{2} - 3 x - 10 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 1$$
$$a_{12} = 0$$
$$a_{13} = - \frac{3}{2}$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = -10$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}1 & 0\\0 & 0\end{matrix}\right|$$
$$\Delta = 0$$
Because
$$\Delta$$
is equal to 0, then
$$\left(\tilde x - \frac{3}{2}\right)^{2} = \frac{49}{4}$$
$$\tilde x'^{2} = \frac{49}{4}$$
Given equation is two parallel straight lines
- reduced to canonical form
where replacement made
$$\tilde x' = \tilde x - \frac{3}{2}$$
$$\tilde y' = \tilde y$$
The center of the canonical coordinate system in OXY
$$x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
$$x_{0} = 0 \cdot 0 + \frac{3}{2}$$
$$y_{0} = \frac{0 \cdot 3}{2}$$
$$x_{0} = \frac{3}{2}$$
$$y_{0} = 0$$
The center of canonical coordinate system at point O
(3/2, 0)

Basis of the canonical coordinate system
$$\vec e_1 = \left( 1, \ 0\right)$$
$$\vec e_2 = \left( 0, \ 1\right)$$
Invariants method
Given line equation of 2-order:
$$x^{2} - 3 x - 10 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 1$$
$$a_{12} = 0$$
$$a_{13} = - \frac{3}{2}$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = -10$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 1$$
     |1  0|
I2 = |    |
     |0  0|

$$I_{3} = \left|\begin{matrix}1 & 0 & - \frac{3}{2}\\0 & 0 & 0\\- \frac{3}{2} & 0 & -10\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}1 - \lambda & 0\\0 & - \lambda\end{matrix}\right|$$
     | 1    -3/2|   |0   0 |
K2 = |          | + |      |
     |-3/2  -10 |   |0  -10|

$$I_{1} = 1$$
$$I_{2} = 0$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2} - \lambda$$
$$K_{2} = - \frac{49}{4}$$
Because
$$I_{2} = 0 \wedge I_{3} = 0 \wedge K_{2} < 0 \wedge I_{1} \neq 0$$
then by line type:
this equation is of type : two parallel lines
$$I_{1} \tilde y^{2} + \frac{K_{2}}{I_{1}} = 0$$
or
$$\tilde y^{2} - \frac{49}{4} = 0$$
None

- reduced to canonical form