Mister Exam

Other calculators

x^2−4x+9y^2+18y−4z^2+24z+49=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
      2            2      2                  
49 + x  - 4*x - 4*z  + 9*y  + 18*y + 24*z = 0
$$x^{2} + 9 y^{2} - 4 z^{2} - 4 x + 18 y + 24 z + 49 = 0$$
x^2 - 4*x + 9*y^2 + 18*y - 4*z^2 + 24*z + 49 = 0
Invariants method
Given equation of the surface of 2-order:
$$x^{2} + 9 y^{2} - 4 z^{2} - 4 x + 18 y + 24 z + 49 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + a_{22} y^{2} + 2 a_{23} y z + a_{33} z^{2} + 2 a_{14} x + 2 a_{24} y + 2 a_{34} z + a_{44} = 0$$
where
$$a_{11} = 1$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{14} = -2$$
$$a_{22} = 9$$
$$a_{23} = 0$$
$$a_{24} = 9$$
$$a_{33} = -4$$
$$a_{34} = 12$$
$$a_{44} = 49$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 6$$
     |1  0|   |9  0 |   |1  0 |
I2 = |    | + |     | + |     |
     |0  9|   |0  -4|   |0  -4|

$$I_{3} = \left|\begin{matrix}1 & 0 & 0\\0 & 9 & 0\\0 & 0 & -4\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}1 & 0 & 0 & -2\\0 & 9 & 0 & 9\\0 & 0 & -4 & 12\\-2 & 9 & 12 & 49\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda + 1 & 0 & 0\\0 & - \lambda + 9 & 0\\0 & 0 & - \lambda - 4\end{matrix}\right|$$
     |1   -2|   |9  9 |   |-4  12|
K2 = |      | + |     | + |      |
     |-2  49|   |9  49|   |12  49|

     |1   0  -2|   |9  0   9 |   |1   0   -2|
     |         |   |         |   |          |
K3 = |0   9  9 | + |0  -4  12| + |0   -4  12|
     |         |   |         |   |          |
     |-2  9  49|   |9  12  49|   |-2  12  49|

$$I_{1} = 6$$
$$I_{2} = -31$$
$$I_{3} = -36$$
$$I_{4} = -2592$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 6 \lambda^{2} + 31 \lambda - 36$$
$$K_{2} = 65$$
$$K_{3} = -2736$$
Because
I3 != 0

then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + \lambda^{3} + I_{2} \lambda - I_{3} = 0$$
or
$$\lambda^{3} - 6 \lambda^{2} - 31 \lambda + 36 = 0$$
Solve this equation
$$\lambda_{1} = 9$$
$$\lambda_{2} = 1$$
$$\lambda_{3} = -4$$
then the canonical form of the equation will be
$$\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0$$
$$9 \tilde x^{2} + \tilde y^{2} - 4 \tilde z^{2} + 72 = 0$$
$$- \frac{\tilde z^{2}}{\left(3 \sqrt{2}\right)^{2}} + \left(\frac{\tilde x^{2}}{\left(2 \sqrt{2}\right)^{2}} + \frac{\tilde y^{2}}{\left(6 \sqrt{2}\right)^{2}}\right) = -1$$
this equation is fora type two-sided hyperboloid
- reduced to canonical form