Mister Exam

x1x2-x1x3-2x2x3 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
x1*x2 - x1*x3 - 2*x2*x3 = 0
x1x2x1x32x2x3=0x_{1} x_{2} - x_{1} x_{3} - 2 x_{2} x_{3} = 0
x1*x2 - x1*x3 - 2*x2*x3 = 0
Invariants method
Given equation of the surface of 2-order:
x1x2x1x32x2x3=0x_{1} x_{2} - x_{1} x_{3} - 2 x_{2} x_{3} = 0
This equation looks like:
a11x32+2a12x2x3+2a13x1x3+2a14x3+a22x22+2a23x1x2+2a24x2+a33x12+2a34x1+a44=0a_{11} x_{3}^{2} + 2 a_{12} x_{2} x_{3} + 2 a_{13} x_{1} x_{3} + 2 a_{14} x_{3} + a_{22} x_{2}^{2} + 2 a_{23} x_{1} x_{2} + 2 a_{24} x_{2} + a_{33} x_{1}^{2} + 2 a_{34} x_{1} + a_{44} = 0
where
a11=0a_{11} = 0
a12=1a_{12} = -1
a13=12a_{13} = - \frac{1}{2}
a14=0a_{14} = 0
a22=0a_{22} = 0
a23=12a_{23} = \frac{1}{2}
a24=0a_{24} = 0
a33=0a_{33} = 0
a34=0a_{34} = 0
a44=0a_{44} = 0
The invariants of the equation when converting coordinates are determinants:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
I1=0I_{1} = 0
     |0   -1|   | 0   1/2|   | 0    -1/2|
I2 = |      | + |        | + |          |
     |-1  0 |   |1/2   0 |   |-1/2   0  |

I3=0112101212120I_{3} = \left|\begin{matrix}0 & -1 & - \frac{1}{2}\\-1 & 0 & \frac{1}{2}\\- \frac{1}{2} & \frac{1}{2} & 0\end{matrix}\right|
I4=01120101201212000000I_{4} = \left|\begin{matrix}0 & -1 & - \frac{1}{2} & 0\\-1 & 0 & \frac{1}{2} & 0\\- \frac{1}{2} & \frac{1}{2} & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right|
I(λ)=λ1121λ121212λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & -1 & - \frac{1}{2}\\-1 & - \lambda & \frac{1}{2}\\- \frac{1}{2} & \frac{1}{2} & - \lambda\end{matrix}\right|
     |0  0|   |0  0|   |0  0|
K2 = |    | + |    | + |    |
     |0  0|   |0  0|   |0  0|

     |0   -1  0|   | 0   1/2  0|   | 0    -1/2  0|
     |         |   |           |   |             |
K3 = |-1  0   0| + |1/2   0   0| + |-1/2   0    0|
     |         |   |           |   |             |
     |0   0   0|   | 0    0   0|   | 0     0    0|

I1=0I_{1} = 0
I2=32I_{2} = - \frac{3}{2}
I3=12I_{3} = \frac{1}{2}
I4=0I_{4} = 0
I(λ)=λ3+3λ2+12I{\left(\lambda \right)} = - \lambda^{3} + \frac{3 \lambda}{2} + \frac{1}{2}
K2=0K_{2} = 0
K3=0K_{3} = 0
Because
I3 != 0

then by type of surface:
you need to
Make the characteristic equation for the surface:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
or
λ33λ212=0\lambda^{3} - \frac{3 \lambda}{2} - \frac{1}{2} = 0
λ1=1\lambda_{1} = -1
λ2=1232\lambda_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2}
λ3=12+32\lambda_{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}
then the canonical form of the equation will be
(x~12λ3+(x~22λ2+x~32λ1))+I4I3=0\left(\tilde x1^{2} \lambda_{3} + \left(\tilde x2^{2} \lambda_{2} + \tilde x3^{2} \lambda_{1}\right)\right) + \frac{I_{4}}{I_{3}} = 0
x~12(12+32)+x~22(1232)x~32=0\tilde x1^{2} \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) + \tilde x2^{2} \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) - \tilde x3^{2} = 0
x~12(112+32)2+(x~22(112+32)2+x~3212)=0- \frac{\tilde x1^{2}}{\left(\frac{1}{\sqrt{\frac{1}{2} + \frac{\sqrt{3}}{2}}}\right)^{2}} + \left(\frac{\tilde x2^{2}}{\left(\frac{1}{\sqrt{- \frac{1}{2} + \frac{\sqrt{3}}{2}}}\right)^{2}} + \frac{\tilde x3^{2}}{1^{2}}\right) = 0
this equation is fora type cone
- reduced to canonical form