Given equation of the surface of 2-order:
x 1 x 2 − x 1 x 3 − 2 x 2 x 3 = 0 x_{1} x_{2} - x_{1} x_{3} - 2 x_{2} x_{3} = 0 x 1 x 2 − x 1 x 3 − 2 x 2 x 3 = 0 This equation looks like:
a 11 x 3 2 + 2 a 12 x 2 x 3 + 2 a 13 x 1 x 3 + 2 a 14 x 3 + a 22 x 2 2 + 2 a 23 x 1 x 2 + 2 a 24 x 2 + a 33 x 1 2 + 2 a 34 x 1 + a 44 = 0 a_{11} x_{3}^{2} + 2 a_{12} x_{2} x_{3} + 2 a_{13} x_{1} x_{3} + 2 a_{14} x_{3} + a_{22} x_{2}^{2} + 2 a_{23} x_{1} x_{2} + 2 a_{24} x_{2} + a_{33} x_{1}^{2} + 2 a_{34} x_{1} + a_{44} = 0 a 11 x 3 2 + 2 a 12 x 2 x 3 + 2 a 13 x 1 x 3 + 2 a 14 x 3 + a 22 x 2 2 + 2 a 23 x 1 x 2 + 2 a 24 x 2 + a 33 x 1 2 + 2 a 34 x 1 + a 44 = 0 where
a 11 = 0 a_{11} = 0 a 11 = 0 a 12 = − 1 a_{12} = -1 a 12 = − 1 a 13 = − 1 2 a_{13} = - \frac{1}{2} a 13 = − 2 1 a 14 = 0 a_{14} = 0 a 14 = 0 a 22 = 0 a_{22} = 0 a 22 = 0 a 23 = 1 2 a_{23} = \frac{1}{2} a 23 = 2 1 a 24 = 0 a_{24} = 0 a 24 = 0 a 33 = 0 a_{33} = 0 a 33 = 0 a 34 = 0 a_{34} = 0 a 34 = 0 a 44 = 0 a_{44} = 0 a 44 = 0 The invariants of the equation when converting coordinates are determinants:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| substitute coefficients
I 1 = 0 I_{1} = 0 I 1 = 0 |0 -1| | 0 1/2| | 0 -1/2|
I2 = | | + | | + | |
|-1 0 | |1/2 0 | |-1/2 0 | I 3 = ∣ 0 − 1 − 1 2 − 1 0 1 2 − 1 2 1 2 0 ∣ I_{3} = \left|\begin{matrix}0 & -1 & - \frac{1}{2}\\-1 & 0 & \frac{1}{2}\\- \frac{1}{2} & \frac{1}{2} & 0\end{matrix}\right| I 3 = 0 − 1 − 2 1 − 1 0 2 1 − 2 1 2 1 0 I 4 = ∣ 0 − 1 − 1 2 0 − 1 0 1 2 0 − 1 2 1 2 0 0 0 0 0 0 ∣ I_{4} = \left|\begin{matrix}0 & -1 & - \frac{1}{2} & 0\\-1 & 0 & \frac{1}{2} & 0\\- \frac{1}{2} & \frac{1}{2} & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right| I 4 = 0 − 1 − 2 1 0 − 1 0 2 1 0 − 2 1 2 1 0 0 0 0 0 0 I ( λ ) = ∣ − λ − 1 − 1 2 − 1 − λ 1 2 − 1 2 1 2 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & -1 & - \frac{1}{2}\\-1 & - \lambda & \frac{1}{2}\\- \frac{1}{2} & \frac{1}{2} & - \lambda\end{matrix}\right| I ( λ ) = − λ − 1 − 2 1 − 1 − λ 2 1 − 2 1 2 1 − λ |0 0| |0 0| |0 0|
K2 = | | + | | + | |
|0 0| |0 0| |0 0| |0 -1 0| | 0 1/2 0| | 0 -1/2 0|
| | | | | |
K3 = |-1 0 0| + |1/2 0 0| + |-1/2 0 0|
| | | | | |
|0 0 0| | 0 0 0| | 0 0 0| I 1 = 0 I_{1} = 0 I 1 = 0 I 2 = − 3 2 I_{2} = - \frac{3}{2} I 2 = − 2 3 I 3 = 1 2 I_{3} = \frac{1}{2} I 3 = 2 1 I 4 = 0 I_{4} = 0 I 4 = 0 I ( λ ) = − λ 3 + 3 λ 2 + 1 2 I{\left(\lambda \right)} = - \lambda^{3} + \frac{3 \lambda}{2} + \frac{1}{2} I ( λ ) = − λ 3 + 2 3 λ + 2 1 K 2 = 0 K_{2} = 0 K 2 = 0 K 3 = 0 K_{3} = 0 K 3 = 0 Because
I3 != 0 then by type of surface:
you need to
Make the characteristic equation for the surface:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 or
λ 3 − 3 λ 2 − 1 2 = 0 \lambda^{3} - \frac{3 \lambda}{2} - \frac{1}{2} = 0 λ 3 − 2 3 λ − 2 1 = 0 λ 1 = − 1 \lambda_{1} = -1 λ 1 = − 1 λ 2 = 1 2 − 3 2 \lambda_{2} = \frac{1}{2} - \frac{\sqrt{3}}{2} λ 2 = 2 1 − 2 3 λ 3 = 1 2 + 3 2 \lambda_{3} = \frac{1}{2} + \frac{\sqrt{3}}{2} λ 3 = 2 1 + 2 3 then the canonical form of the equation will be
( x ~ 1 2 λ 3 + ( x ~ 2 2 λ 2 + x ~ 3 2 λ 1 ) ) + I 4 I 3 = 0 \left(\tilde x1^{2} \lambda_{3} + \left(\tilde x2^{2} \lambda_{2} + \tilde x3^{2} \lambda_{1}\right)\right) + \frac{I_{4}}{I_{3}} = 0 ( x ~ 1 2 λ 3 + ( x ~ 2 2 λ 2 + x ~ 3 2 λ 1 ) ) + I 3 I 4 = 0 x ~ 1 2 ( 1 2 + 3 2 ) + x ~ 2 2 ( 1 2 − 3 2 ) − x ~ 3 2 = 0 \tilde x1^{2} \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) + \tilde x2^{2} \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) - \tilde x3^{2} = 0 x ~ 1 2 ( 2 1 + 2 3 ) + x ~ 2 2 ( 2 1 − 2 3 ) − x ~ 3 2 = 0 − x ~ 1 2 ( 1 1 2 + 3 2 ) 2 + ( x ~ 2 2 ( 1 − 1 2 + 3 2 ) 2 + x ~ 3 2 1 2 ) = 0 - \frac{\tilde x1^{2}}{\left(\frac{1}{\sqrt{\frac{1}{2} + \frac{\sqrt{3}}{2}}}\right)^{2}} + \left(\frac{\tilde x2^{2}}{\left(\frac{1}{\sqrt{- \frac{1}{2} + \frac{\sqrt{3}}{2}}}\right)^{2}} + \frac{\tilde x3^{2}}{1^{2}}\right) = 0 − ( 2 1 + 2 3 1 ) 2 x ~ 1 2 + ( − 2 1 + 2 3 1 ) 2 x ~ 2 2 + 1 2 x ~ 3 2 = 0 this equation is fora type cone
- reduced to canonical form