Given equation of the surface of 2-order:
− 3 u y − 6 y = 0 - 3 u y - 6 y = 0 − 3 u y − 6 y = 0 This equation looks like:
a 11 x 2 + 2 a 12 x y + 2 a 13 u x + 2 a 14 x + a 22 y 2 + 2 a 23 u y + 2 a 24 y + a 33 u 2 + 2 a 34 u + a 44 = 0 a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} u x + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} u y + 2 a_{24} y + a_{33} u^{2} + 2 a_{34} u + a_{44} = 0 a 11 x 2 + 2 a 12 x y + 2 a 13 ux + 2 a 14 x + a 22 y 2 + 2 a 23 u y + 2 a 24 y + a 33 u 2 + 2 a 34 u + a 44 = 0 where
a 11 = 0 a_{11} = 0 a 11 = 0 a 12 = 0 a_{12} = 0 a 12 = 0 a 13 = 0 a_{13} = 0 a 13 = 0 a 14 = 0 a_{14} = 0 a 14 = 0 a 22 = 0 a_{22} = 0 a 22 = 0 a 23 = − 3 2 a_{23} = - \frac{3}{2} a 23 = − 2 3 a 24 = − 3 a_{24} = -3 a 24 = − 3 a 33 = 0 a_{33} = 0 a 33 = 0 a 34 = 0 a_{34} = 0 a 34 = 0 a 44 = 0 a_{44} = 0 a 44 = 0 The invariants of the equation when converting coordinates are determinants:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| substitute coefficients
I 1 = 0 I_{1} = 0 I 1 = 0 |0 0| | 0 -3/2| |0 0|
I2 = | | + | | + | |
|0 0| |-3/2 0 | |0 0| I 3 = ∣ 0 0 0 0 0 − 3 2 0 − 3 2 0 ∣ I_{3} = \left|\begin{matrix}0 & 0 & 0\\0 & 0 & - \frac{3}{2}\\0 & - \frac{3}{2} & 0\end{matrix}\right| I 3 = 0 0 0 0 0 − 2 3 0 − 2 3 0 I 4 = ∣ 0 0 0 0 0 0 − 3 2 − 3 0 − 3 2 0 0 0 − 3 0 0 ∣ I_{4} = \left|\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & - \frac{3}{2} & -3\\0 & - \frac{3}{2} & 0 & 0\\0 & -3 & 0 & 0\end{matrix}\right| I 4 = 0 0 0 0 0 0 − 2 3 − 3 0 − 2 3 0 0 0 − 3 0 0 I ( λ ) = ∣ − λ 0 0 0 − λ − 3 2 0 − 3 2 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0 & 0\\0 & - \lambda & - \frac{3}{2}\\0 & - \frac{3}{2} & - \lambda\end{matrix}\right| I ( λ ) = − λ 0 0 0 − λ − 2 3 0 − 2 3 − λ |0 0| |0 -3| |0 0|
K2 = | | + | | + | |
|0 0| |-3 0 | |0 0| |0 0 0 | | 0 -3/2 -3| |0 0 0|
| | | | | |
K3 = |0 0 -3| + |-3/2 0 0 | + |0 0 0|
| | | | | |
|0 -3 0 | | -3 0 0 | |0 0 0| I 1 = 0 I_{1} = 0 I 1 = 0 I 2 = − 9 4 I_{2} = - \frac{9}{4} I 2 = − 4 9 I 3 = 0 I_{3} = 0 I 3 = 0 I 4 = 0 I_{4} = 0 I 4 = 0 I ( λ ) = − λ 3 + 9 λ 4 I{\left(\lambda \right)} = - \lambda^{3} + \frac{9 \lambda}{4} I ( λ ) = − λ 3 + 4 9 λ K 2 = − 9 K_{2} = -9 K 2 = − 9 K 3 = 0 K_{3} = 0 K 3 = 0 Because
I 3 = 0 ∧ I 4 = 0 ∧ I 2 ≠ 0 I_{3} = 0 \wedge I_{4} = 0 \wedge I_{2} \neq 0 I 3 = 0 ∧ I 4 = 0 ∧ I 2 = 0 then by type of surface:
you need to
Make the characteristic equation for the surface:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 or
λ 3 − 9 λ 4 = 0 \lambda^{3} - \frac{9 \lambda}{4} = 0 λ 3 − 4 9 λ = 0 λ 1 = − 3 2 \lambda_{1} = - \frac{3}{2} λ 1 = − 2 3 λ 2 = 3 2 \lambda_{2} = \frac{3}{2} λ 2 = 2 3 λ 3 = 0 \lambda_{3} = 0 λ 3 = 0 then the canonical form of the equation will be
( x ~ 2 λ 1 + y ~ 2 λ 2 ) + K 3 I 2 = 0 \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) + \frac{K_{3}}{I_{2}} = 0 ( x ~ 2 λ 1 + y ~ 2 λ 2 ) + I 2 K 3 = 0 − 3 x ~ 2 2 + 3 y ~ 2 2 = 0 - \frac{3 \tilde x^{2}}{2} + \frac{3 \tilde y^{2}}{2} = 0 − 2 3 x ~ 2 + 2 3 y ~ 2 = 0 x ~ 2 ( 6 3 ) 2 − y ~ 2 ( 6 3 ) 2 = 0 \frac{\tilde x^{2}}{\left(\frac{\sqrt{6}}{3}\right)^{2}} - \frac{\tilde y^{2}}{\left(\frac{\sqrt{6}}{3}\right)^{2}} = 0 ( 3 6 ) 2 x ~ 2 − ( 3 6 ) 2 y ~ 2 = 0 this equation is fora type two intersecting planes
- reduced to canonical form