Mister Exam

Other calculators

2y^2−2xy−2xz+2yz+6√3*x−6√3*z−9=0. canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
        2         ___                                 ___    
-9 + 2*y  - 6*z*\/ 3  - 2*x*y - 2*x*z + 2*y*z + 6*x*\/ 3  = 0
$$- 2 x y - 2 x z + 6 \sqrt{3} x + 2 y^{2} + 2 y z - 6 \sqrt{3} z - 9 = 0$$
-2*x*y - 2*x*z + 6*sqrt(3)*x + 2*y^2 + 2*y*z - 6*sqrt(3)*z - 9 = 0
Invariants method
Given equation of the surface of 2-order:
$$- 2 x y - 2 x z + 6 \sqrt{3} x + 2 y^{2} + 2 y z - 6 \sqrt{3} z - 9 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
where
$$a_{11} = 0$$
$$a_{12} = -1$$
$$a_{13} = -1$$
$$a_{14} = 3 \sqrt{3}$$
$$a_{22} = 2$$
$$a_{23} = 1$$
$$a_{24} = 0$$
$$a_{33} = 0$$
$$a_{34} = - 3 \sqrt{3}$$
$$a_{44} = -9$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 2$$
     |0   -1|   |2  1|   |0   -1|
I2 = |      | + |    | + |      |
     |-1  2 |   |1  0|   |-1  0 |

$$I_{3} = \left|\begin{matrix}0 & -1 & -1\\-1 & 2 & 1\\-1 & 1 & 0\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}0 & -1 & -1 & 3 \sqrt{3}\\-1 & 2 & 1 & 0\\-1 & 1 & 0 & - 3 \sqrt{3}\\3 \sqrt{3} & 0 & - 3 \sqrt{3} & -9\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & -1 & -1\\-1 & 2 - \lambda & 1\\-1 & 1 & - \lambda\end{matrix}\right|$$
     |             ___|             |               ___|
     |   0     3*\/ 3 |   |2  0 |   |   0      -3*\/ 3 |
K2 = |                | + |     | + |                  |
     |    ___         |   |0  -9|   |     ___          |
     |3*\/ 3     -9   |             |-3*\/ 3      -9   |

                                                        |                       ___ |
     |                 ___|   |2     1         0    |   |   0        -1     3*\/ 3  |
     |   0     -1  3*\/ 3 |   |                     |   |                           |
     |                    |   |                  ___|   |                        ___|
K3 = |  -1     2      0   | + |1     0      -3*\/ 3 | + |  -1        0      -3*\/ 3 |
     |                    |   |                     |   |                           |
     |    ___             |   |        ___          |   |    ___       ___          |
     |3*\/ 3   0     -9   |   |0  -3*\/ 3      -9   |   |3*\/ 3   -3*\/ 3      -9   |
                                                        

$$I_{1} = 2$$
$$I_{2} = -3$$
$$I_{3} = 0$$
$$I_{4} = 108$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 2 \lambda^{2} + 3 \lambda$$
$$K_{2} = -72$$
$$K_{3} = -27$$
Because
$$I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0$$
then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - 2 \lambda^{2} - 3 \lambda = 0$$
$$\lambda_{1} = 3$$
$$\lambda_{2} = -1$$
$$\lambda_{3} = 0$$
then the canonical form of the equation will be
$$\tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
and
$$- \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
$$3 \tilde x^{2} - \tilde y^{2} + 12 \tilde z = 0$$
and
$$3 \tilde x^{2} - \tilde y^{2} - 12 \tilde z = 0$$
$$2 \tilde z + \left(\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{6}\right) = 0$$
and
$$- 2 \tilde z + \left(\frac{\tilde x^{2}}{2} - \frac{\tilde y^{2}}{6}\right) = 0$$
this equation is fora type hyperbolic paraboloid
- reduced to canonical form