Mister Exam

Other calculators

2x^2+7y^2-28xy+2x+7y-1=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
              2            2             
-1 + 2*x + 2*x  + 7*y + 7*y  - 28*x*y = 0
$$2 x^{2} - 28 x y + 2 x + 7 y^{2} + 7 y - 1 = 0$$
2*x^2 - 28*x*y + 2*x + 7*y^2 + 7*y - 1 = 0
Detail solution
Given line equation of 2-order:
$$2 x^{2} - 28 x y + 2 x + 7 y^{2} + 7 y - 1 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 2$$
$$a_{12} = -14$$
$$a_{13} = 1$$
$$a_{22} = 7$$
$$a_{23} = \frac{7}{2}$$
$$a_{33} = -1$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}2 & -14\\-14 & 7\end{matrix}\right|$$
$$\Delta = -182$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$2 x_{0} - 14 y_{0} + 1 = 0$$
$$- 14 x_{0} + 7 y_{0} + \frac{7}{2} = 0$$
then
$$x_{0} = \frac{4}{13}$$
$$y_{0} = \frac{3}{26}$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = x_{0} + \frac{7 y_{0}}{2} - 1$$
$$a'_{33} = - \frac{15}{52}$$
then equation turns into
$$2 x'^{2} - 28 x' y' + 7 y'^{2} - \frac{15}{52} = 0$$
Rotate the resulting coordinate system by an angle φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = \frac{5}{28}$$
then
$$\phi = \frac{\operatorname{acot}{\left(\frac{5}{28} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{28 \sqrt{809}}{809}$$
$$\cos{\left(2 \phi \right)} = \frac{5 \sqrt{809}}{809}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}}$$
substitute coefficients
$$x' = \tilde x \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}}$$
$$y' = \tilde x \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}} + \tilde y \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}}$$
then the equation turns from
$$2 x'^{2} - 28 x' y' + 7 y'^{2} - \frac{15}{52} = 0$$
to
$$7 \left(\tilde x \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}} + \tilde y \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}}\right)^{2} - 28 \left(\tilde x \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}} + \tilde y \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}}\right) \left(\tilde x \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}}\right) + 2 \left(\tilde x \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}} - \tilde y \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}}\right)^{2} - \frac{15}{52} = 0$$
simplify
$$- 28 \tilde x^{2} \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}} \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}} - \frac{25 \sqrt{809} \tilde x^{2}}{1618} + \frac{9 \tilde x^{2}}{2} - \frac{140 \sqrt{809} \tilde x \tilde y}{809} + 10 \tilde x \tilde y \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}} \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}} + \frac{25 \sqrt{809} \tilde y^{2}}{1618} + \frac{9 \tilde y^{2}}{2} + 28 \tilde y^{2} \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}} \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}} - \frac{15}{52} = 0$$
$$- \frac{\sqrt{809} \tilde x^{2}}{2} + \frac{9 \tilde x^{2}}{2} + \frac{9 \tilde y^{2}}{2} + \frac{\sqrt{809} \tilde y^{2}}{2} - \frac{15}{52} = 0$$
Given equation is hyperbole
$$\frac{\tilde x^{2}}{\frac{15}{52} \frac{1}{- \frac{9}{2} + \frac{\sqrt{809}}{2}}} - \frac{\tilde y^{2}}{\frac{15}{52} \frac{1}{\frac{9}{2} + \frac{\sqrt{809}}{2}}} = -1$$
- reduced to canonical form
The center of canonical coordinate system at point O
(4/13, 3/26)

Basis of the canonical coordinate system
$$\vec e_1 = \left( \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}}, \ \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}}\right)$$
$$\vec e_2 = \left( - \sqrt{\frac{1}{2} - \frac{5 \sqrt{809}}{1618}}, \ \sqrt{\frac{5 \sqrt{809}}{1618} + \frac{1}{2}}\right)$$
Invariants method
Given line equation of 2-order:
$$2 x^{2} - 28 x y + 2 x + 7 y^{2} + 7 y - 1 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 2$$
$$a_{12} = -14$$
$$a_{13} = 1$$
$$a_{22} = 7$$
$$a_{23} = \frac{7}{2}$$
$$a_{33} = -1$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 9$$
     | 2   -14|
I2 = |        |
     |-14   7 |

$$I_{3} = \left|\begin{matrix}2 & -14 & 1\\-14 & 7 & \frac{7}{2}\\1 & \frac{7}{2} & -1\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}2 - \lambda & -14\\-14 & 7 - \lambda\end{matrix}\right|$$
     |2  1 |   | 7   7/2|
K2 = |     | + |        |
     |1  -1|   |7/2  -1 |

$$I_{1} = 9$$
$$I_{2} = -182$$
$$I_{3} = \frac{105}{2}$$
$$I{\left(\lambda \right)} = \lambda^{2} - 9 \lambda - 182$$
$$K_{2} = - \frac{89}{4}$$
Because
$$I_{2} < 0 \wedge I_{3} \neq 0$$
then by line type:
this equation is of type : hyperbola
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} - 9 \lambda - 182 = 0$$
$$\lambda_{1} = \frac{9}{2} - \frac{\sqrt{809}}{2}$$
$$\lambda_{2} = \frac{9}{2} + \frac{\sqrt{809}}{2}$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$\tilde x^{2} \left(\frac{9}{2} - \frac{\sqrt{809}}{2}\right) + \tilde y^{2} \left(\frac{9}{2} + \frac{\sqrt{809}}{2}\right) - \frac{15}{52} = 0$$
$$\frac{\tilde x^{2}}{\frac{15}{52} \frac{1}{- \frac{9}{2} + \frac{\sqrt{809}}{2}}} - \frac{\tilde y^{2}}{\frac{15}{52} \frac{1}{\frac{9}{2} + \frac{\sqrt{809}}{2}}} = -1$$
- reduced to canonical form