Given line equation of 2-order:
$$- 3 k + r \left(- 4 k + 8 i\right) - 4 i = 0$$
This equation looks like:
$$a_{11} r^{2} + 2 a_{12} k r + 2 a_{13} r + a_{22} k^{2} + 2 a_{23} k + a_{33} = 0$$
where
$$a_{11} = 0$$
$$a_{12} = -2$$
$$a_{13} = 4 i$$
$$a_{22} = 0$$
$$a_{23} = - \frac{3}{2}$$
$$a_{33} = - 4 i$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}0 & -2\\-2 & 0\end{matrix}\right|$$
$$\Delta = -4$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} r_{0} + a_{12} k_{0} + a_{13} = 0$$
$$a_{12} r_{0} + a_{22} k_{0} + a_{23} = 0$$
substitute coefficients
$$- 2 k_{0} + 4 i = 0$$
$$- 2 r_{0} - \frac{3}{2} = 0$$
then
$$r_{0} = - \frac{3}{4}$$
$$k_{0} = 2 i$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} r'^{2} + 2 a_{12} k' r' + a_{22} k'^{2} = 0$$
where
$$a'_{33} = a_{13} r_{0} + a_{23} k_{0} + a_{33}$$
or
$$a'_{33} = - \frac{3 k_{0}}{2} + 4 i r_{0} - 4 i$$
$$a'_{33} = - 10 i$$
then equation turns into
$$- 4 k' r' - 10 i = 0$$
Rotate the resulting coordinate system by an angle φ
$$r' = - \tilde k \sin{\left(\phi \right)} + \tilde r \cos{\left(\phi \right)}$$
$$k' = \tilde k \cos{\left(\phi \right)} + \tilde r \sin{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = 0$$
then
$$\phi = \frac{\pi}{4}$$
$$\sin{\left(2 \phi \right)} = 1$$
$$\cos{\left(2 \phi \right)} = 0$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{\sqrt{2}}{2}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{2}}{2}$$
substitute coefficients
$$r' = - \frac{\sqrt{2} \tilde k}{2} + \frac{\sqrt{2} \tilde r}{2}$$
$$k' = \frac{\sqrt{2} \tilde k}{2} + \frac{\sqrt{2} \tilde r}{2}$$
then the equation turns from
$$- 4 k' r' - 10 i = 0$$
to
$$- 4 \left(- \frac{\sqrt{2} \tilde k}{2} + \frac{\sqrt{2} \tilde r}{2}\right) \left(\frac{\sqrt{2} \tilde k}{2} + \frac{\sqrt{2} \tilde r}{2}\right) - 10 i = 0$$
simplify
$$2 \tilde k^{2} - 2 \tilde r^{2} - 10 i = 0$$
$$- 2 \tilde k^{2} + 2 \tilde r^{2} + 10 i = 0$$
Given equation is hyperbole
None
- reduced to canonical form
The center of canonical coordinate system at point O
(-3/4, 2*I)
Basis of the canonical coordinate system
$$\vec e_1 = \left( \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)$$