196 canonical form
The teacher will be very surprised to see your correct solution 😉
The solution
Invariants method
Given line equation of 2-order:
False This equation looks like:
a 11 x 2 + 2 a 12 x y + 2 a 13 x + a 22 y 2 + 2 a 23 y + a 33 = 0 a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0 a 11 x 2 + 2 a 12 x y + 2 a 13 x + a 22 y 2 + 2 a 23 y + a 33 = 0 where
a 11 = 0 a_{11} = 0 a 11 = 0 a 12 = 0 a_{12} = 0 a 12 = 0 a 13 = 0 a_{13} = 0 a 13 = 0 a 22 = 0 a_{22} = 0 a 22 = 0 a 23 = 0 a_{23} = 0 a 23 = 0 a 33 = 196 a_{33} = 196 a 33 = 196 The invariants of the equation when converting coordinates are determinants:
I 1 = a 11 + a 22 I_{1} = a_{11} + a_{22} I 1 = a 11 + a 22 |a11 a12|
I2 = | |
|a12 a22| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I ( λ ) = ∣ a 11 − λ a 12 a 12 a 22 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 12 a 22 − λ |a11 a13| |a22 a23|
K2 = | | + | |
|a13 a33| |a23 a33| substitute coefficients
I 1 = 0 I_{1} = 0 I 1 = 0 |0 0|
I2 = | |
|0 0| I 3 = ∣ 0 0 0 0 0 0 0 0 196 ∣ I_{3} = \left|\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 196\end{matrix}\right| I 3 = 0 0 0 0 0 0 0 0 196 I ( λ ) = ∣ − λ 0 0 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0\\0 & - \lambda\end{matrix}\right| I ( λ ) = − λ 0 0 − λ |0 0 | |0 0 |
K2 = | | + | |
|0 196| |0 196| I 1 = 0 I_{1} = 0 I 1 = 0 I 2 = 0 I_{2} = 0 I 2 = 0 I 3 = 0 I_{3} = 0 I 3 = 0 I ( λ ) = λ 2 I{\left(\lambda \right)} = \lambda^{2} I ( λ ) = λ 2 K 2 = 0 K_{2} = 0 K 2 = 0 Because
I 2 = 0 ∧ I 3 = 0 ∧ ( I 1 = 0 ∨ K 2 = 0 ) I_{2} = 0 \wedge I_{3} = 0 \wedge \left(I_{1} = 0 \vee K_{2} = 0\right) I 2 = 0 ∧ I 3 = 0 ∧ ( I 1 = 0 ∨ K 2 = 0 ) then by line type:
this equation is of type : two coincident straight lines
I 1 y ~ 2 + K 2 I 1 = 0 I_{1} \tilde y^{2} + \frac{K_{2}}{I_{1}} = 0 I 1 y ~ 2 + I 1 K 2 = 0 or
False None - reduced to canonical form