Mister Exam

Other calculators

-7x^2-6xy+1y^2-8=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
      2      2            
-8 + y  - 7*x  - 6*x*y = 0
$$- 7 x^{2} - 6 x y + y^{2} - 8 = 0$$
-7*x^2 - 6*x*y + y^2 - 8 = 0
Detail solution
Given line equation of 2-order:
$$- 7 x^{2} - 6 x y + y^{2} - 8 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = -7$$
$$a_{12} = -3$$
$$a_{13} = 0$$
$$a_{22} = 1$$
$$a_{23} = 0$$
$$a_{33} = -8$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}-7 & -3\\-3 & 1\end{matrix}\right|$$
$$\Delta = -16$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$- 7 x_{0} - 3 y_{0} = 0$$
$$- 3 x_{0} + y_{0} = 0$$
then
$$x_{0} = 0$$
$$y_{0} = 0$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = -8$$
$$a'_{33} = -8$$
then equation turns into
$$- 7 x'^{2} - 6 x' y' + y'^{2} - 8 = 0$$
Rotate the resulting coordinate system by an angle φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = \frac{4}{3}$$
then
$$\phi = \frac{\operatorname{acot}{\left(\frac{4}{3} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{3}{5}$$
$$\cos{\left(2 \phi \right)} = \frac{4}{5}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{3 \sqrt{10}}{10}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{10}}{10}$$
substitute coefficients
$$x' = \frac{3 \sqrt{10} \tilde x}{10} - \frac{\sqrt{10} \tilde y}{10}$$
$$y' = \frac{\sqrt{10} \tilde x}{10} + \frac{3 \sqrt{10} \tilde y}{10}$$
then the equation turns from
$$- 7 x'^{2} - 6 x' y' + y'^{2} - 8 = 0$$
to
$$\left(\frac{\sqrt{10} \tilde x}{10} + \frac{3 \sqrt{10} \tilde y}{10}\right)^{2} - 6 \left(\frac{\sqrt{10} \tilde x}{10} + \frac{3 \sqrt{10} \tilde y}{10}\right) \left(\frac{3 \sqrt{10} \tilde x}{10} - \frac{\sqrt{10} \tilde y}{10}\right) - 7 \left(\frac{3 \sqrt{10} \tilde x}{10} - \frac{\sqrt{10} \tilde y}{10}\right)^{2} - 8 = 0$$
simplify
$$- 8 \tilde x^{2} + 2 \tilde y^{2} - 8 = 0$$
$$8 \tilde x^{2} - 2 \tilde y^{2} + 8 = 0$$
Given equation is hyperbole
$$\frac{\tilde x^{2}}{1} - \frac{\tilde y^{2}}{4} = -1$$
- reduced to canonical form
The center of canonical coordinate system at point O
(0, 0)

Basis of the canonical coordinate system
$$\vec e_1 = \left( \frac{3 \sqrt{10}}{10}, \ \frac{\sqrt{10}}{10}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{10}}{10}, \ \frac{3 \sqrt{10}}{10}\right)$$
Invariants method
Given line equation of 2-order:
$$- 7 x^{2} - 6 x y + y^{2} - 8 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = -7$$
$$a_{12} = -3$$
$$a_{13} = 0$$
$$a_{22} = 1$$
$$a_{23} = 0$$
$$a_{33} = -8$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = -6$$
     |-7  -3|
I2 = |      |
     |-3  1 |

$$I_{3} = \left|\begin{matrix}-7 & -3 & 0\\-3 & 1 & 0\\0 & 0 & -8\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda - 7 & -3\\-3 & 1 - \lambda\end{matrix}\right|$$
     |-7  0 |   |1  0 |
K2 = |      | + |     |
     |0   -8|   |0  -8|

$$I_{1} = -6$$
$$I_{2} = -16$$
$$I_{3} = 128$$
$$I{\left(\lambda \right)} = \lambda^{2} + 6 \lambda - 16$$
$$K_{2} = 48$$
Because
$$I_{2} < 0 \wedge I_{3} \neq 0$$
then by line type:
this equation is of type : hyperbola
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} + 6 \lambda - 16 = 0$$
$$\lambda_{1} = 2$$
$$\lambda_{2} = -8$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$2 \tilde x^{2} - 8 \tilde y^{2} - 8 = 0$$
$$\frac{\tilde x^{2}}{4} - \frac{\tilde y^{2}}{1} = 1$$
- reduced to canonical form